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ABSTRACT

Large-scale baroclinic instability is investigated as a potential source of Rossby waves and large-scale

variability in the ocean. This baroclinic instability is first reviewed in a 2.5-layer model. As already noticed by

several authors, the instability arises in westward surface mean flow when the phase velocities of the two

vertical modes are made equal by mean flow influence. This large-scale instability is stronger at low latitudes

and thus is likely to happen in the westward return flow of the subtropical gyres. Further investigations with a

continuous stratification quasigeostrophic model show that the instability is stronger where the mean flow

projects negatively on the second baroclinic mode (imposing positive vertical modes at the surface). The

linear stability calculation is then performed on Argo-derived mean flow along with mean stratification data.

The results show that the unstable regions are situated at low latitudes in every oceanic basin, in western

boundary currents, and in some part of the Antarctic Circumpolar Current. The location of these unstable

regions is well correlated with the region of negative projection of the mean flow on the second baroclinic

mode. Given that the unstable mode growth times are generally smaller than 6 months at low latitudes, these

unstable modes are likely to be observable in satellite altimetry. Therefore, results of the present article

suggest that the large-scale instability is indeed a source of large-scale variability at low latitudes.

1. Introduction

During the last 20 yr, the measurements of the ocean

surface properties by satellite instruments have allowed

us to significantly increase our knowledge of ocean dy-

namics. Chelton and Schlax (1996) were among the first

to show that large-scale anomalies, propagating to the

west, were observable in the altimetry. Since then, a

large number of authors have described these anoma-

lies, generally depicted as Rossby waves, using various

techniques such as a Hovmöller diagram (Chelton and

Schlax 1996), Fourier transform (Osychny andCornillon

2004), finite impulse response (FIR) filter (Polito and

Liu 2003), and so on. It is generally agreed that the large-

scale anomalies can be seen in every oceanic basin (Fu

2004) and that their displacement velocity is in good

agreement with Rossby wave phase velocity theory at

latitudes lower than 308 (Polito and Liu 2003) but faster

at higher latitudes (Chelton and Schlax 1996; Osychny

and Cornillon 2004), especially for small wavelengths

(Zang and Wunsch 2001). The discrepancy between the

theory and satellite observations seems to be reduced by

the inclusion of both the mean flow and the topography

in the theory of Rossby waves (Killworth et al. 1997;

Killworth and Blundell 2005; Aoki et al. 2009; Tailleux

and McWilliams 2001; Hunt et al. 2012).

The Rossby waves can be forced by numerous phe-

nomena such as the wind or buoyancy anomalies, me-

soscale eddies, eastern boundary anomalies, and so on.

In fact, they are the main response of the ocean to large-

scale forcing, and as such, any process that introduces a

large-scale perturbation in the ocean is likely to produce

Rossby waves.White and Saur (1983) andmore recently

Fu and Qiu (2002) studied the respective role of wind

variability and eastern boundary variability in setting

the observed surface anomalies in the North Pacific.

They found that the eastern boundary is mostly re-

sponsible for the variability at low latitudes, whereas

wind forcing accounts for most of the signal at mid- and

high latitudes. Cabanes et al. (2006) showed that in some

regions of the North Atlantic, a large part of the large-

scale signal is also related to the local response to heat

flux changes.

In this article, we are particularly interested in the gen-

eration of Rossby waves, or more broadly of large-scale
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anomalies, by the baroclinic instability of the mean

flow. Baroclinic instability is believed to be the main

forcing of mesoscale eddies (Gill et al. 1974). Smith

(2007) has performed a global stability analysis on the

observed mean flow and has shown that most of the

ocean is unstable, particularly regions of strong mean

currents such as western boundary currents or the

Antarctic Circumpolar Current. The fastest growing

modes of this instability, called the Charney modes

(Charney 1947), have growth rates of a few days and

length scales generally smaller than 100 km. Smith

(2007) also mention a good correlation of the maxi-

mum growth rate with the observed distribution of

eddy kinetic energy.

However, as first shown by Green (1960), the mean

flow can also be unstable at larger length scale; these

unstable modes are called ‘‘Green modes.’’ The method

used in Smith (2007) filters out the Green modes by

selecting the fastest growing modes. But this choice is

not a suitable method for the study of these large-scale

modes and a different method needs to be developed.

Killworth and Blundell (2007) filters out the Charney

modes by calculating the instability at specified zonal

and meridional wavenumbers: k5 2p/500 radkm21 and

l5 0. However, by imposing arbitrary wavelengths, this

method is unlikely to select the fastest growing Green

modes. Smith (2007) showed, for the Charney modes,

that the wavenumbers at which the fastest growth oc-

curred are quite sensitive to the mean flow direction and

intensity. The same behavior is expected for the Green

modes. Colin de Verdière (1986) and de Szoeke (1999)

have discussed the conditions of baroclinic instability in

the planetary geostrophic large-scale context. Colin de

Verdière and Huck (1999) and Liu (1999) have shown

that the mechanism behind the Green modes can con-

veniently be understood in a 2.5-layer quasigeostrophic

(QG) model. At large scales, under the rigid-lid ap-

proximation, the time scale of the barotropic mode be-

comes infinitely small, while that of the baroclinic mode

is very large, making these two modes unable to interact

and give rise to an instability. This property of the baro-

tropic motion explains why the large-scale instability

does not happen in a 2-layer setting, while it is possible

in a 2.5-layer model where two active baroclinic modes

can interact.

A subsidiary question concerns the link of these un-

stable Green modes with the global unstable or least

damped modes calculated in the ocean general circula-

tion model by Sévellec and Fedorov (2013) for instance.

These modes have decadal time scales and are good

candidates to explain the decadal natural variability in

ocean and coupled models. Sévellec and Huck (2015)

interpreted this mode in a simplified three-level model

as resulting from unstable large-scale baroclinic Rossby

waves. However, our main theoretical tool to under-

stand this phenomenon is precisely the local baroclinic

instability analysis that gives rise to the Green modes.

The questions we want to address therein are as follows:

First, what is the mechanism of large-scale baroclinic

instability? Which properties of the mean flow lead to

such instability? And, finally, what are the regions, if

any, where the mean flow circulation is most likely to

produce large-scale instabilities?

We will first review the mechanism of large-scale

baroclinic instability as depicted in Colin de Verdière
and Huck (1999) and Liu (1999) and add some results

useful for its understanding. Then, we will perform the

stability calculation on real mean flow data extracted

from a database constructed with Argo floats displace-

ments (Ollitrault and Colin de Verdière 2014) and the

thermal wind with the World Ocean Atlas 2009

(WOA2009). The last sections conclude and give some

perspectives for future work.

2. The 2.5-layer quasigeostrophic model

The best way to understand the mechanism of large-

scale unstable modes is to use the simplest model where

they can be found. The simplest model with large-scale

baroclinic instability is the 2.5-layer QG model already

studied by Liu (1999). The mean flow is assumed to be

purely zonal in two active layers with the same thickness

H 5 200m. Under the QG assumptions, the conserva-

tion of potential vorticity in layers 1 and 2 reads

8>><
>>:

d

dt
[=2c

1
1F

1
(c

2
2c

1
)1by]5 0

d

dt
[=2c

2
1F

2
(c

1
2 2c

2
1c

3
)1by]5 0

, (1)

with F1 5F2 5F5 f 20 /(g
0H) the squared inverse of the

deformation radius, where g0 is the reduced gravity and

f0 and b are, respectively, the Coriolis parameter and its

local linear variation; d�/dt5 ›t �1 J(ci, �) with i 5 1, 2;

and cn(x, y, t) (n 5 1, 2, 3) are the streamfunctions in

layers 1, 2, and 3, respectively, with (x, y, t) the zonal,

meridional, and time coordinates. We assume that there

is no pressure anomaly in layer 3, which implies that

c3 5 0 in (1). Since we are interested in large-scale

anomalies, the long-wave approximation is made. Fur-

thermore, we also assume in what follows that the

equations are inviscid and adiabatic. The use of the long-

wave approximation implies that the equations have no

dependence on wavenumber jjkjj and, as a result, the

calculation of the phase speed and the effect of the

dissipation (which is dependent on jjkjj) can be treated
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independently. We will only deal with the first problem

in this article. System (1) thus becomes

8>>><
>>>:
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(2)

which is the same as system (6) in Liu (1999). The

quantities U1 and U2 are the mean velocities in layer

1 and 2, respectively. Introducing ci5 ai exp[ j(kx2vt)]

in (2), where i is the number of the layer, j is the imag-

inary unit, and assuming the meridional wavenumber

l 5 0, lead to

(
(U

1
2 c)[F(a

2
2a

1
)]1 [b1F(U

1
2U

2
)]a

1
5 0

(U
2
2 c)[F(a

1
2 2a

2
)]1 [b1F(2U

2
2U

1
)]a

2
5 0

.

(3)

System (3) has a solution only if its determinant is zero.

The following second-order equation for c5 v/k is then

obtained:

c2F 2 1 cF(3b2FU
2
)1b[b2F(U

1
1U

2
)]5 0. (4)

The solutions have an imaginary part only if the dis-

criminant of (4) is negative. This discriminant, called D,
is linked to the model parameters through the following

formula:

D5 [5b2 1bF(4U
1
2 2U

2
)1F 2U2

2 ]F
2 . (5)

The phase velocities corresponding to the two solutions

are then

c
6
5

2F(3b2FU
2
)6

ffiffiffiffi
D

p

2F2
. (6)

Without mean flow, c2 is the first baroclinic mode while

c1 is the second. The vertical structures of the first and

second baroclinic modes without mean flow satisfy

[G
1
(1),G

1
(2)]5 [1, 0:5(211

ffiffiffi
5

p
)] (7)

for the first baroclinic mode with its phase velocity

c1 52(b/F)[(31
ffiffiffi
5

p
)/2] and

[G
2
(1),G

2
(2)]5 [1, 0:5(212

ffiffiffi
5

p
)] (8)

for the second with c2 52(b/F)[(32
ffiffiffi
5

p
)/2].

The equation D 5 0 that separates the unstable solu-

tions from the stable ones can be written as a parabola

equation:

U
1
52

1

4bF
[(FU

2
2b)2 1 4b2] . (9)

From this formula, it is a simple matter to show that

the instabilities arise when both U1 , 2(b/F) and

jU2 2 (b/F)j , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2[(U1F)/b]2 1

p
are satisfied. Thus,

the surface velocity needs to be directed westward to

produce instabilities. When the surface zonal west-

ward velocity is stronger, the growth time decreases

and the instability becomes stronger. Figure 1 shows

the growth time as a function of U1 and U2 calculated

with a 1000-km zonal wavelength. The directions of the

two vertical modes (with no mean flow) are shown on

the same figure; the first baroclinic mode direction

obeys the equation U1 5 0:5(11
ffiffiffi
5

p
)U2 and that of the

second mode obeys the equation U1 5 0:5(12
ffiffiffi
5

p
)U2.

The directions satisfy

�
U

1

U
2

��
G

2
(1)

G
2
(2)

�
5 0 (10)

for the first baroclinic mode and

�
U

1

U
2

��
G

1
(1)

G
1
(2)

�
5 0 (11)

for the second. We will explain in a following section

why the unstable region is encompassed by these two

directions.

FIG. 1. Growth time (days) of large-scale modes in a 2.5-layer

quasigeostrophicmodel as a function of the zonal velocities in layer

1 (U1) and layer 2 (U2). The zonal wavelength is 1000 km, and the

latitude is 308N. The two lines are the first (dashed) and second

(solid) baroclinic modes; H 5 200m.
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a. Growth mechanism

What mechanism leads to an increase of the potential

energy anomaly (the kinetic energy anomaly vanishes in

the long-wave approximation)? By evaluating the

magnitude of the different terms of the equation con-

trolling the instability in a numerical experiment, Colin

de Verdière and Huck (1999) have shown that the

growth is dominated by 2b0y0›yB, where b0 is the

anomaly of buoyancy, y0 is the anomaly of meridional

velocity, and B is the mean buoyancy. We show in what

follows that this term can be obtained directly from the

equation controlling the potential energy anomalies.

Wewrite t15 c12 c2 and t25 c2, with t1 and t2 as the

temperature anomalies respectively between layers 1 and

2 and between layers 2 and 3. Equations for t1 and t2 are8>>><
>>>:

F

2

›t21
›t

52[b1F(U
1
2U

2
)]c

2

›c
1

›x

F

2

›t22
›t

5bc
2

›c
1

›x

, (12)

where the mean over a wavelength is denoted by an

upper bar.

For potential energies at each interface t21 and t22 to

both have an exponential growth, then c2›c1/›x. 0 and

[b1F(U1 2U2)], 0. One can check that the latter

condition is indeed true in the instability region of Fig. 1

[b1F(U1 2U2)5 0 is the tangent to the parabola from

(9) at U1 522b/F and U2 52b/F]. Since c2›c1/›x5
2(c1 2c2)›c1/›x5 b0›c1/›x, the first condition implies

positive eddy flux by the meridional velocity anomalies.

The equivalent relation for a continuous arbitrary

stratification is

1

2

›

›t

"�
›c

›z

�2
#
5

›U

›z

›c

›x

›c

›z
, (13)

where the upper bar is now a mean over a wavelength

and a mean over the depth. Therefore, a growth

in the potential energy can only be achieved if

(›U/›z)(›c/›x)(›c/›z). 0. One can check that the sum

of (12) over the two active layers leads to the same re-

lation. Note that (13) can be rewritten as

1

2

›

›t
b02 52b0y0›

y
B . (14)

This relation justifies the use of b0y0›yB, 0 in Colin de

Verdière andHuck (1999) to diagnose baroclinic instability.

b. Latitude dependence

In the instability region, solutions [(6)] are complex

conjugates and the growth time is calculated for a

particular wavelength of k 5 2p/1000 km as 1/J(v) 5
1/[kJ(c)] (where J is the imaginary part). Here, we

choose H 5 200m and g0 5 0.01m s22. At 308N,

the growth time is approximately 150 days for a sur-

face velocity of 1 cm s21 and 100 days when the ve-

locity is 10 cm s21. The latitude dependence of the

growth time is shown in Fig. 2 for a surface velocity of

U1 5 22 cm s21 and for U2 5 0. The growth time first

decreases with the latitude until it reaches approxi-

mately 208 (for the mean velocities under consider-

ation here), then the growth time increases rapidly

and the waves become stable for smaller latitudes.

This nonmonotonic behavior of the solution can be

understood assumingU2 5 0. Under this assumption, the

mean flow is unstable wherever U1 , 2(5/4)(b/F) 5
U1min. The latitude dependence of U1min is the same as

that of the long Rossby waves’ velocities, and when the

latitude decreases, U1min becomes more negative and

eventually reaches 22 cms21 at some latitude (here at

208N); the flow is then stable. Figure 3 shows the latitude

corresponding to the maximum growth as a function of

U1 and U2. The larger the absolute values of U1 and U2,

the lower the latitude of maximum growth. For reason-

able mean flow values, we thus expect the large-scale

instability to happen at low latitudes. These Figs. 1, 2, and

3 show that the unstablemodes are foundwhere themean

flow projects negatively on both baroclinic modes (when

the vertical modes are chosen to be positive at the sur-

face). The explanation of this feature will be given in a

following section.

FIG. 2. Growth time (days) of large-scale modes in a 2.5-layer

quasigeostrophic model as a function of the latitude for a zonal-

surface velocity of 20.02m s21 and a zero velocity in layer 2. The

zonal wavelength is 1000 km and g0 5 0.01m s22; H 5 200m.
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c. Phase speed variation

The phase velocity of the fastest westward mode is

shown in Fig. 4, which is adapted from Liu (1999)

(normalized by the phase velocity of the first baroclinic

mode with nomean flow) as a function ofU1 andU2. For

values of U1 and U2 situated in the instability region,

there is one growing and one decaying mode with the

same real phase velocity. The real phase velocity in the

instability region depends solely on U2:

C52
3b

2F
1

U
2

2
. (15)

When themean flow is stable, Liu (1999) showed that one

of the two modes approximately satisfies the ‘‘non-

Doppler shift,’’ whereas the second is advected by U2.

This effect can also be observed in Fig. 4. When U2 is

large enough toward the west, lines of the same phase

velocities are aligned with those of U2, whereas for U2 .
0 and U1 . 0, the phase velocity stays close to the baro-

clinic phase speed with no mean flow. The non-Doppler

shift argument is then used in Liu (1999) to explain why

the instability appears only where the first-layer velocity

is westward. Liu first notes that an interaction between

two baroclinic waves, and thus instability, is only possible

when the two waves have the same phase speed. As-

suming that U1 and U2 have the same sign, Liu (1999)

argues that for a westward flow, one of the modes is ad-

vected toward the west, while the other is not modified

(the first baroclinic mode), at least to leading order, be-

cause of the non-Doppler shift. As a result, the second

baroclinic phase velocity can be equal to the first only if

the flow is westward since an eastward flow would make

the differences between the two phase speeds larger.

This argument, however, raises several questions such

as what happens if U1U2 , 0 since Fig. 1 shows that in-

stabilities exist in this region? If the second baroclinic

mode cannot reach the first baroclinic phase velocity

with a westward flow, can the first baroclinic phase ve-

locity be decelerated to reach the phase velocity of the

second baroclinic mode? What happens when the

number of vertical modes is increased? These questions

will be answered in the next paragraphs.

d. Can the first baroclinic Rossby wave phase speed
be decreased by the mean flow toward the second
baroclinic mode?

First of all, let us show that the equality of the phase

velocities of the two modes is a necessary condition for

the instability but not a sufficient one. Indeed when the

discriminant [(5)] is zero, the two modes (there is in fact

only one mode) have the same phase velocity but are

stable. Those modes are situated on the parabola [(9)].

Our goal in this paragraph is to derive an equation

describing the evolution of the phase speeds of the two

Rossbywaves when themean flow projects on the first or

second baroclinic modes (calculated without mean

flow). The vectors G1(z) and G2(z) form an orthogonal

basis in which any anomaly can be expressed uniquely.

As a result, c can be decomposed as�
c
1
(x, y, t)

c
2
(x, y, t)

�
5 a(x, y, t)G

1
(z)1 b(x, y, t)G

2
(z) ,

FIG. 4. Phase velocities of the fastest westward mode normalized

by the phase velocity of the first baroclinic mode with no mean flow.

The gray region shows the unstable region where D , 0. The same

figure (but for different parameters) can be found in Liu (1999).

FIG. 3. Latitude of maximum growth for H 5 200m. The di-

rection of the two vertical modes is added (dashed for the first

baroclinic mode and solid for the second).
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where a and b are the coordinates of c in this basis.

Choosing to study the effect of a mean flow along

Gi(z) (where i can be 1 or 2), that is to say

�
U

1

U
2

�
5U

BCi
G

i
(z) ,

and using the fact that the vertical modes without mean

flow satisfy the following equation

2c
i

�
F[G

i
(2)2G

i
(1)]

F[G
i
(1)2 2G

i
(2)]

�
1b

�
G

i
(1)

G
i
(2)

�
5 0, (16)

with c152(31
ffiffiffi
5

p
)[b/(2F)] and c252(32

ffiffiffi
5

p
)[b/(2F)],

system (3) becomes8>>>><
>>>>:
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Using the decomposition of c on each vertical mode,

system (17) becomes
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>>>:
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Then, dividing by b and projecting on mode Gi(z):�
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and on the other mode G32i(z),

01b
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c
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�
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2
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c
1

�
(21)i1150.

(20)

Equations (19) and (20) form a system of two equations

with two unknowns that has a solution only if its de-

terminant is zero. The zero determinant condition gives

two solutions for c. The first is c5 ci, meaning that one of

the two modes is not affected by the mean current; it is

what has been called the non-Doppler shift. The re-

maining solution is

c5c
32i

1U
BCi

�
12

c
32i

c
i

�
�
j51,2

G
32i

( j)G
1
( j)G

2
( j) . (21)

Since G1(2) . 0, G2(1) . 0, and G2(2) , 0, the

sum �j51,2G2( j)G1( j)G2( j) is positive; and since

G1(1)G1(1)G2(1) . 2[G1(2)G1(2)G2(2)], the sum

�j51,2G1( j)G1( j)G2( j) is also positive. The two waves

have the same phase speed when c5 ci. Setting c5 ci

in (21) gives, with i 5 1, the following mean zonal

velocity on the first baroclinic mode:

U
BC1

5
c
1

�
j51,2

G
2
( j)G

1
( j)G

2
( j)

. (22)

And since c1, 0,UBC1 needs to be negative to make the

two phase velocities equal. For a wave modified by a

zonal mean flow with a second baroclinic vertical

structure,

U
BC2

5
c
2

�
j51,2

G
1
( j)G

1
( j)G

2
( j)

; (23)

the same argument leads to the conclusion that UBC2 ,
0 when the two phase speed are equal. Thus, in order to

decrease the westward phase velocity of the first baro-

clinic mode to make it equal to the second, the mean

velocity needs to project negatively on the second

baroclinic mode. However, if the mean current projects

uniquely on a single vertical mode (which means that

either UBC1 5 0 or UBC2 5 0), there is no instability.

Indeed, (22) and (23) are situated on the parabola cor-

responding to a zero discriminant [(5)]. Figure 1 illus-

trates this property: when UBC satisfies (23) and UBC1

satisfies (22), the two axes corresponding to the two

vertical modes encompass the instability region.

Therefore, in a 2.5-layer model, an instability can arise

only if the projection of the mean flow is nonzero on the

two vertical modes. We shall see, however, in section 3,

that this property does not hold for configurations where

the number of vertical modes is larger than two.
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As Liu (1999) suggested, the second baroclinic wave

can be accelerated by a negative projection of the mean

flow on the first baroclinic mode (which corresponds

to a negative surface velocity). This possibility is il-

lustrated in Fig. 5, where the mean flow contained in

the first baroclinic mode accelerates the phase speed of

the second baroclinic mode when it is negative and

decelerates it otherwise. On the same figure, we show

that when the mean flow projects negatively on the

second baroclinic mode, an instability appears for

UBC1 , 0, but that when the projection on the second

baroclinic mode is zero, there is no instability. How-

ever, a second possibility that was not explored by

Liu (1999) exists: the first baroclinic wave can be de-

celerated by a negative projection of the mean flow on

the second baroclinic mode. This negative projection

corresponds to a westward surface velocity and an

eastward velocity in the second layer. This possibility is

illustrated in Fig. 6 where themean flow contained in the

second baroclinic mode decelerates the phase speed of

the first baroclinic mode when it is negative and accel-

erates it otherwise. In the same figure we show that when

the mean flow projects negatively on the first baroclinic

mode, an instability appears for UBC2 , 0, but when the

projection on the first baroclinic mode is zero, there is no

instability.

This second possibility has already been noticed by

Dewar (1998) when trying to understand the discrepancy

between the observed and theoretical planetary waves’

phase speeds. The corrections of the phase velocities of

the first baroclinic mode due to the mean flow are anti-

correlated with the surface mean flow direction. This has

been also observed in the continuous case by Colin de

Verdière and Tailleux (2005).

e. Vertical structure of the modes, link with their
phase speed

1) UNSTABLE REGION

Inside the unstable region shown in Fig. 1, the am-

plitude of the growing modes in the first layer ja1j and in

the second layer ja2j can be linked using the phase speed

[(6)] and the first equation of (3) for instance. The fol-

lowing formula is then obtained:

ja
1
j52

b1FU
1

b
ja

2
j , (24)

which shows that the ratio of the two amplitudes de-

pends solely on the mean zonal velocity in the first

layer. Thus, in the 2.5-layer model, the vertical

structure of the modes inside the unstable region can

project on the first or on second baroclinic mode

depending on U1.

2) STABLE REGION

We will first show that the curves of constant phase

speed ci(U1, U2) 5 constant (i 5 1, 2) are the straight

lines tangent to the parabola D 5 0 [see (5), which links

D to U1 and U2; there are two solutions]. The non-

Doppler shift tells us that inside the stable region, ci is

unchanged if (U1, U2) is replaced by (U1, U2)1
g(ai

1, a
i
2), where g is any real number and (ai

1, a
i
2) is

the eigenvector of system (3). Indeed, the advection of

FIG. 5. Phase speed of the two modes as a function of the mean

flowprojection on the first baroclinicmode (UBC1). The dashed line

shows the phase speeds when the projection of the mean flow on

the second baroclinic mode is zero, and the solid line shows when

the projection is negative. The modes are unstable when there is

only one solution for c (when UBC2 , 0).

FIG. 6. As in Fig. 5, but for the second baroclinic mode (UBC2).
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the potential vorticity anomaly by the mean flow,

gF[ai
1(a

i
2 2ai

1), a
i
2(a

i
1 2 2ai

2)], cancels with the ad-

vection of mean potential vorticity by the meridio-

nal velocity anomaly gF[(ai
1 2ai

2)a
i
1, (2a

i
2 2ai

1)a
i
2] in

system (3).

As a result, the curves ci(U1, U2) 5 constant are

straight lines directed by the vector (ai
1, a

i
2). When the

coefficient g varies in (U1, U2)1 g(ai
1, a

i
2), one of the

solutions ci is unchanged, while the other c32i takes ev-

ery value on the real number line, since c32i is of the

form Ag 1 B, where A and B are constants depending

on (U1,U2). The fact that c32i is of the formAg 1 B has

been shown for the special case where (U1, U2) 5 (0, 0)

by (21), but the demonstration is essentially the same

when (U1,U2) 6¼ (0, 0). Thus, for some g05 g0, we obtain

ci 5 c32i(g0), which is situated on the parabola D 5 0.

The equation ci(U1,U2)5 constant is thus a straight line

passing through the point (U1, U2) and a point situated

on the parabola D 5 0. Furthermore, since c32i(g) can

only be real (because ci is real and ci, c32i are the solu-

tions to a second-order algebraic equation), the

straight line of constant ci does not cross the curve

D 5 0 and is thus a tangent to this curve. As a result, in

the plane (U1, U2) one can geometrically construct the

constant phase speed lines and deduce from their slope

the vertical structure of the modes. This is done in

Fig. 7 where the constant phase speed lines are con-

structed as the tangents of the parabola D 5 0. Some

modes are surface intensified (when the absolute slope

is smaller than 1), while others are intensified in the

second layer (when the absolute slope is larger than 1).

This figure allows us to easily deduce several features

of the influence of the mean zonal flow on the phase

speed and vertical structure of the modes. Some of

them will now be given.

When the phase velocity is larger than2b/F, the signs

of the streamfunction in layers 1 and 2 are opposed,

whereas they are otherwise of the same sign. When

U1 5 2b/F, the phase velocity is westward, and the

amplitude of one of the two modes is zero in the first

layer. An example of this is shown in Fig. 7 by a black

circle; for this particular mean velocity, one vertical

mode is surface intensified while the other has a nonzero

amplitude only in the second layer.

The two vertical modes both have the same sign in

layers 1 and 2 when U1 , 2b/F, while they have oppo-

site signs when U1 .2b/F. The two tangents with thick

black lines show the limits between the surface and

second-layer intensified modes. Inside the region de-

limited by these two tangents (toward small jU1j), one
mode is intensified in the first layer and the other in the

second layer. Outside this region (toward small jU2j),
the two modes are surface intensified.

3. Quasigeostrophicmodel with continuous vertical
stratification

Wehave seen in the last section that the instability can

arise in a 2.5-layer configuration either when the mean

flow accelerates the second baroclinic mode or de-

celerates the first baroclinic mode. Both of these pro-

cesses involve a westward zonal mean flow at the

surface. However, one can ask if this is still the case

when the number of vertical modes is increased. For

instance, the inclusion of a third baroclinic mode makes

the instabilities’ possibilities potentially richer; the third

baroclinic mode may also interact with the other two to

give rise to an instability. We investigate this possibility

in a continuously stratified model with a number of

vertical modes determined by the number of vertical

points (which is chosen to be 100 here). Assuming that

the mean flow is zonal and that the long-wave approxi-

mation can be made, the linearized quasigeostrophic

equation is

FIG. 7. Lines of constant phase speed (thin black lines) as

a function of U1, U2. These straight lines are also the tangents to

equation D 5 0. The gray region shows the region where D# 0. As

shown in section 2e, the slope of the straight lines reveals the

vertical structure of the modes; when the absolute slope is larger

than 1, the mode is second layer intensified, while when the slope is

smaller than 1, the mode is surface intensified. The separations

between surface- and second layer–intensified modes are given by

the two thick black lines. Two examples are denoted by surface

intensified or second layer intensified in the figure. The values of

the phase velocities (in m s21) can conveniently be calculated by

(15) on the parabola D 5 0, and some of them are reported in the

figure in theD, 0 region. The black circle shows a position (U1,U2)

where one of the two modes is surface intensified, and the other is

intensified in the second layer and is, in fact, completely contained

in it.
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with the following boundary conditions:
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›z
2
›U

›z

›c

›x
50, (26)

which applies at z5 0 and z52H. To study the effect of

the vertical structure of U(z) on the stability, U(z) is

written as a sum of the first and second baroclinicmodes:

U(z)5U
BC1

F
1
(z)1U

BC2
F
2
(z) , (27)

where (UBC1, UBC2) are respectively the projection of

U(z) on the first and second baroclinic modes. The terms

F1(z) and F2(z) are normalized at the surface [F1(0) 5
F2(0) 5 1]. The mean flow is assumed to have a zero

projection on higher baroclinic modes. The barotropic

velocities, let us call them UBT here, do not have any

influence on the growth time since their only effect is to

introduce a Doppler shift in the phase velocities: CBT 5
C 2 UBT, where C and CBT are, respectively, the phase

velocities (which can be imaginary) without and with the

barotropic velocity.

Perturbation of the form c(x, z, t) 5 a(z) exp[j(kx 5
vt)] is inserted in (25) and (26). It is straightforward to

notice that (25) and (26) impose the frequency v to be

linear in k, that is, v 5 2ck with c a constant. Thus,

we simply calculate c and obtain the growth time: T 5
1/[J(v)] for a fixed k (here, and in what follows, we

choose k 5 2p/1000 rad km21).

The vertical profile of the buoyancy frequency is the

one used in Gill et al. (1974):

N(z)5102f
0
exp(z/1800), (28)

where f0 is the Coriolis parameter. The growth time of

the most unstable mode as a function of UBC1 and UBC2

is shown in Fig. 8. Instabilities now arise everywhere in

the (UBC1, UBC2) plan, but some of them, those for

whichUBC2, 0, have very short growth time. In contrast

with the 2.5-layer configuration, strong instabilities with

growth time shorter than a year can also happen for an

eastward zonal surface (baroclinic) velocity. When the

mean flow has a zero projection on the first baroclinic

mode (UBC1 5 0), the mean flow is unstable where

UBC2 , 0. Thus, unlike what have been found in the 2.5-

layer configuration, in a continuous configuration, an

instability can arise even if the mean flow projects on a

single vertical mode.

This can be explained by noticing that the 2.5-layer

configuration is a singular one. Indeed, the instability is

the result of the interaction of two waves, but when the

mean flow projects on a single vertical mode, one of the

two frequencies is real; unmodified by the mean flow

(the non-Doppler shift mode), the remaining solution

can thus only be real since both obey a second-order

algebraic equation with real coefficients.

The fact that the instability is stronger forUBC2, 0 can

conveniently be understood by assuming UBC1 5 0 in a

simpler three vertical modes model. A derivation of the

N-layer model can be found in Flierl (1978). The use of a

three vertical modes model instead of the continuous

equations derived above [see (25)] simplifies the un-

derstanding of the instability mechanism by reducing the

number of possible interactions. The variation of the

phase velocities of the three baroclinic modes is shown in

Fig. 9. The figure illustrates that withUBC2. 0, the phase

velocities of the first and third baroclinic modes both in-

crease westward but diverge. On the contrary, with

UBC2 , 0, the phase velocity of the third vertical mode

increases, whereas that of the first vertical mode de-

creases. Thus, for some value ofUBC2 , 0, the two phase

velocities are equal and an instability can develop. The

projection of the vertical structures of the perturbations

on the traditional vertical modes reveals that they are

mostly contained in the first and second baroclinicmodes.

FIG. 8. Growth time (yr) of the most unstable mode in a con-

tinuously stratified QG model for a zonal mean flow U(z) 5
UBC1F1(z) 1 UBC2F2(z) with F1(z), F2(z) the first and second

baroclinic modes normalized at the surface [F1(0)5 F2(0)5 1] and

UBC1, UBC2 the abscissa and ordinate multiplying these vertical

structures. Instabilities happen everywhere, but only the growth time

shorter than 9 yr are shown. The solid line represents U(z 5 0)5 0;

left of this line,U(z5 0), 0, and right of this line,U(z5 0). 0. The

latitude under consideration is 308N, and the buoyancy frequency is

given by the analytical equation (28).
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The best way to find the regions in the ocean where

these instabilities may arise is to perform the stability

calculation directly on density and velocity profiles. This

is the subject of the following section.

4. Stability of the oceanic mean flow currents as
deduced from Argo floats

a. Method

First, (25) and (26) are modified to take into account

both the zonal and meridional mean velocities U(z) and

V(z):

�
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(29)

with the following boundary condition
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dz
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dz
50, (30)

which applies at z 5 0 and z 5 2H. Note that the

boundary conditions in a realistic ocean are still de-

batable (see, for instance, Aoki et al. 2009; Bobrovich

and Reznik 1999; Hunt et al. 2012; Tailleux and

McWilliams 2001).

The mean flow database that is used to solve (29) has

been constructed as follows: The mean geopotential at

all depths is obtained by integrating hydrostatics from

the absolute geopotential at 1000db computed by

Ollitrault and Colin de Verdière (2014) from Argo float

displacements. The mean density field comes from the

WOA2009 (Locarnini et al. 2010; Antonov et al. 2010).

The mean geostrophic currents have a 18 horizontal

resolution and 33 vertical levels ranging from 10m at the

surface to 500m at depth.

For each grid point on the globe, the mean current

(U, V) and the stratification is extracted from the atlas,

and

dQ

dy
5b2

d

dz

�
f 20

N2(z)

dU

dz

�

and

dQ

dx
5

d

dz

�
f 20

N2(z)

dV

dz

�

are calculated. Although U � V in most of the ocean,

the mean meridional velocity might play an important

role in setting the largest growth rate at some places

(see, for instance, Spall 2000). Once these fields are

obtained, c 5 a(z) exp[j(kx 1 ly 1 vt)] is introduced

in (29), and the result is vertically discretized with

centered finite differences. To solve (29), we write

k5 kkk[cos(u), sin(u)], with u as the orientation of the

wave vector and kkk as its norm. Using c52v/kkk,
(29) becomes

[2c1U cos(u)1V sin(u)]
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and the boundary condition at z 5 0 and z 5 2H is

[2c1U cos(u)1V sin(u)]
da

dz
2 sin(u)a

dV

dz

2cos(u)a
dU

dz
50. (32)

At each position, (31) and (32) are solved for u varying

between 0 and 2p. The c(u) with the larger negative

imaginary part is the fastest growingmode of the studied

FIG. 9. The phase speed of first three baroclinic modes as

a function of the projection of the mean flow on the second baro-

clinic vertical mode [normalized such that (1/H)
Ð
0
2HG(z)2 dz5 1

and G(0) . 0 with G(z) the vertical mode under consideration].

The instabilities are shown with the thick red line made of red

crosses. This calculation has been performed in a three modes

model (first, second, and third baroclinic modes) described in Flierl

(1978). The position of the three modes are shown in the figure;

note that the phase speed of the second baroclinic mode is constant

since the mean flow projects only on the second baroclinic mode.
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position. The growth timeT5 (cmaxkm)
21 is obtained by

multiplying cmax (the imaginary part of the fastest

growing mode) and km 5 2p/1000 rad km21.

To anticipatewhere the stronger instabilities take place,

one can project the zonal mean flow on the second baro-

clinic mode [normalized such that (1/H)
Ð
0
2HG(z)2 dz5 1

and G(0) . 0, with G(z) as the vertical mode under

consideration] and look for regions where this pro-

jection is negative, as suggested in the previous section.

This is done in Fig. 10, where the zonal mean flow is

taken from the database that has been described above

and has been projected on the second baroclinic mode.

The vertical modes are calculated from WOA2009 strat-

ification data. The projection is negative at low latitudes

and in some parts of the Antarctic Circumpolar Current.

b. Growth time and location of the unstable regions

The growth times given by this calculation fwith [U(z),

V(z)]g are shown in Fig. 11. The most unstable regions

are situated at low latitudes in the Indian, Pacific, and

Atlantic Oceans, with growth time scales shorter than a

year. At higher latitudes, unstable regions exist mainly in

the western boundary currents, particularly in the Gulf

Stream and in the Antarctic Circumpolar Current. This

figure confirms the conclusions of the 2.5-layer model

studied above: large-scale instability is stronger at low

latitudes.

A good correlation is found between the regions

where the mean flow projects negatively on the second

baroclinic mode (Fig. 10) and the regions of maximum

growth (Fig. 11). Indeed the projection is negative in

the ACC region and at low latitudes in the Indian, At-

lantic, and PacificOceans, where the instability is strong.

However, some regions are unstable; while the projection

of the mean flow on the second baroclinic mode is posi-

tive, this is the case, for instance, of some part of western

boundary currents. This is probably because the meridi-

onal mean flow, which is of the order of the zonal one in

this region, was not taken into account in the previous

stability criteria. At high latitudes, in the Atlantic and

Pacific Oceans, the projection is negative in some regions

that nevertheless remain stable. This is well explained by

the fact that the higher the latitude, the smaller the in-

stability, as shown in Fig. 2 in the 2.5-layer equations (an

argument that is also valid with a vertically continuous

stratification). Thus, for a given growth time, the negative

projection of the mean flow on the second baroclinic

mode is larger at high than at low latitudes. It explains

why although these two regions are located at the same

(absolute) latitude, the weak second baroclinic mode

mean flow of the high-latitude regions of the North Pa-

cific and Atlantic are stable, while the strong second

baroclinic mode mean flow of the ACC is unstable.

c. Real phase speed of the unstable modes

The zonal average of the real phase speed of the most

unstable wave as a function of the latitude for every

oceanic basin is shown in Fig. 12 along with the phase

speed of the fastest westward mode. Both phase speed

are calculated with (31), but the former is chosen as the

maximum of J(ci) (with i as the vertical mode number

and J as the imaginary part), while the latter is the

minimum of <(ci) (< is the real part).

This figure reveals that in every oceanic basin (At-

lantic, Pacific, and Indian) and at mid- and high lati-

tudes, the zonal phase speed of the most unstable mode

follows quite well the phase speed of the fastest west-

ward mode. At lower latitudes, the most unstable mode

FIG. 10. Projection of the zonal mean flow (m s21) on the second baroclinic mode [nor-

malized by (1/H)
Ð
0
2HG2(z)

2
dz with G2(z) as the second baroclinic vertical mode] calculated

with stratification data from the World Ocean Atlas 2009.
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phase speed is slightly smaller than that of the fastest

westward mode but remains comparable. Since the ob-

served phase speed are in good agreement with the

fastest westward mode at low latitudes (Killworth et al.

1997), the phase speeds of the most unstable modes are

also similar to that given by the observations.

A natural question then arises: is the growth rate

sufficiently fast compared to the propagation time to

produce an observable signal by, for instance, satellite

altimetry? With a phase speed equal to 5 cm s21 (which

is the phase speed around 208 of latitude), the time to

cross a 4000-km basin is approximately 2.5 yr. Since the

growth time in unstable regions may be shorter than

6months, we expect the growth to be sufficiently large to

be detectable in the altimetry. For instance, in this par-

ticular example, the amplitude of the initial perturbation

is multiplied by exp(5)’ 150, and an initial perturbation

amplitude as small as 1mm could thus be seen in the

satellite altimetry [which has a sampling error of 2–4 cm

(Fu and Cazenave 2000)]. Of course, this argument as-

sumes that the mean flow does not change along the

mode propagation, which is generally not true. Never-

theless, at low latitudes the unstable regions seem to be

sufficiently large (for instance the unstable region of the

North Pacific extends from the U.S. West Coast to the

Philippines) to allow a substantial growth.

d. Vertical structure of the unstable modes

For each spatial position, the vertical structure of the

most unstable mode is projected on the local first and

second baroclinic modes with no mean flow (and nor-

malized such that that (1/H)
Ð
0
2HG(z)2 dz5 1 andG(0).

0, with G(z) as the vertical mode under consideration).

The fraction of the vertical structure in the first and

FIG. 12. Zonally averaged zonal phase speed (real part; m s21) of the most unstable mode

(red) and of the fastest westward mode (black) for the (left) Atlantic, (center) Pacific, and

(right) Indian Oceans as a function of the latitude. The phase velocities are calculated with

Argo floats–derived mean flow data and with WOA2009 stratification.

FIG. 11. Growth time (kkkci)21 (yr) of the most unstable large-scale modes with

kkk5 2p/1000 rad km21. The two green arrows show the three sites detailed in Figs. 15, 16,

and 17 (precisely located with crosses). White regions are regions with no data.
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second baroclinic modes is shown in Figs. 13 and 14. The

vertical structure in the unstable regions is very well de-

scribed by the first and second baroclinic modes. Indeed,

the sum of these twomodes represents more than 80%of

the most unstable mode vertical structure in almost all

regions. The ACC and part of the low-latitude South

Pacific are mostly described by the first baroclinic mode.

Low-latitude South Atlantic and part of the low-latitude

South Pacific are mostly described by the second baro-

clinic mode. And finally, the Northwest Pacific is well

described by both the first and second baroclinic modes.

The vertical structure of the most unstable mode gives an

idea of how themodewill be radiated if it reaches a stable

region. For instance, amodewith a first baroclinic vertical

structure leaving an unstable region will be radiated as a

first baroclinic Rossby wave.

In Fig. 11, two arrows point toward three sites that are

studied in detail in the following paragraph. These two

regions are located in the Antarctic Circumpolar Cur-

rent and at low latitude in the South Pacific Ocean. In

each region, the mean meridional and zonal velocities

are shown along with the amplitude and phase of the

most unstable modes.

e. Antarctic Circumpolar Current region

The first site at 518S and 1248E is situated in the ACC

in one of the unstable regions of Fig. 11, south of Aus-

tralia. The mean zonal velocity, shown in Fig. 15, is di-

rected toward the east for all depths. It is at its maximum

at the surface with a 10 cm s21 value and decreases

monotonically with depth. The meridional velocity is

directed toward the south with a smaller amplitude of

2.5 cm s21. Themost unstable mode has a growth time of

0.4 yr and a vertical structure that follows a first baro-

clinic mode; it has one zero on the vertical around a

depth of 1500m. Although hardly noticeable in Fig. 15,

the mean zonal velocity at this site has a negative pro-

jection on the second baroclinic mode. For comparison,

we also show in Fig. 16 a site situated at the same lon-

gitude but at a lower latitude of 478S, outside the

FIG. 13. Fraction of themost unstablemode vertical structure contained in the first baroclinic

mode. The first baroclinic mode is calculated with WOA2009 stratification, and the most un-

stablemodes are calculatedwithArgo floats–derivedmean flow.White regions are regionswith

no data.

FIG. 14. As in Fig. 13, but for the second baroclinic mode.
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unstable region of Fig. 11. The zonal velocity is still

eastward at the surface but turns westward at 100-m

depth and then eastward again around 2000m; its pro-

jection on the second baroclinic mode is now positive.

The most unstable mode has a vertical structure that

looks like a second baroclinic mode (it has two zeros on

the vertical) and a growth timemuch longer than before:

3.6 yr. This site where the instability is weak is typical of

the midlatitude regions (mainly the central parts of the

subtropical gyres) where the zonal mean flow projects

negatively on the second baroclinic mode.

f. South Pacific, low-latitude region

The third site is typical of a large part of the unstable

region of Fig. 11: low latitudes with westward mean

surface current. Figure 17 shows that the mean zonal

velocity is westward for all depth with a maximum

around 100m. The meridional mean current is north-

ward with an amplitude smaller than that of the zonal

one. The corresponding most unstable mode has a first

baroclinic vertical structure, with one zero around

1500m. The growth time is around 0.3 yr.

These three examples confirm that the largest growth

rates are found in mean flows with a negative projection

on the second baroclinic mode.

5. Conclusions

We have investigated here large-scale baroclinic in-

stabilities as a potential source of Rossby waves and

FIG. 15. Vertical structure of the most unstable mode (growth time of 0.382 yr) of the (left)

zonal and meridional mean velocities at 518S and 1248E (ACC) and the (center) amplitude and

(right) phase.

FIG. 16. As in Fig. 15, but for 478S and 1248E (ACC). Growth time is 3.58 yr.
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large-scale ocean variability. We first showed that in a

2.5-layer quasigeostrophic model, the large-scale in-

stability occurs when the projections of the zonal mean

flow on the first and second baroclinic modes are both

negative (by convention, the vertical modes are positive

at the surface). The instability can either occur when the

mean flow decelerates the first baroclinic mode toward

the second or when the second is accelerated toward the

first, a case that has not been described by Liu (1999).

Unlike the instability active at mesoscales (Smith 2007),

this large-scale instability is stronger at low latitudes.We

showed that in the 2.5-layermodel the curves of constant

phase speed for stable modes, in the (U1, U2) plane, are

tangent lines to the parabola of neutral stability. The

slope of these curves can be linked to the vertical

structure of the corresponding modes. The 2.5-layer

model is singular; there is no instability along the ver-

tical modes’ directions since the non-Doppler shift im-

poses that one of the phase velocity is real. We thus

examined the effect of a larger number of vertical modes

using the continuous equations. The calculation reveals

that the instabilities are much stronger when the pro-

jection on the second baroclinic mode is negative,

whereas the projection on the first mode can either be

positive or negative. Further investigation shows that

the unstable shear modes have a first or second stratifi-

cation baroclinic mode vertical structure.

The local stability analysis has then been performed

on the observed mean flows (U and V), obtained from a

reconstruction of the circulation using Argo float dis-

placement at 1000db and thermal wind, with the quasi-

geostrophic equation under the long-wave approximation.

The results reveal that the most unstable regions are

situated at low latitudes, in western boundary currents

(particularly in the Gulf Stream), and also at high lat-

itudes in the Antarctic Circumpolar Current. The re-

gions of negative projection of the mean flow on the

second baroclinic mode are also situated at low lati-

tudes in every oceanic basin and in the Antarctic Cir-

cumpolar Current and correlate well with the regions

of largest growth. The growth time scales at low lati-

tudes are generally shorter than a year for length scales

of a thousand kilometers and are thus likely to con-

tribute to the generation of the Rossby waves that can

be observed in these regions. Our results significantly

differ from the Charney-type baroclinic instability

growth rate close to or below the internal Rossby radius

scale (Smith 2007). Two types of regions show relatively

large growth rates at both wavelengths, the western

boundary current regions (Gulf Stream and Kuroshio)

and theACC.Otherwise, the latitude dependence of the

growth rate at mesoscale and large-scale appears clearly

different: low latitudes show the smaller growth at the

mesoscale, but larger growth at the large scale. The next

section discusses these results and suggests several im-

provements of this work.

6. Discussion

This article examines the potential generation of

large-scale variability by baroclinic instability. Since the

zonal phase speed of the unstable modes is comparable

to that of the observed phase speed at low latitudes, the

observed signal in this region could be the result of un-

stable Rossby waves. Further investigations are needed

to answer this question. The time scales under consid-

eration here are thus around a year. Since the employed

methodology—the linear stability analysis—has a lot in

FIG. 17. As in Fig. 15, but for 10.58S and 1208W (South Pacific, low latitude). Growth time is

0.268 yr.
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common with the one used to calculate the basin

modes, it is worth comparing the location of the un-

stable region found here with the location of the largest

amplitude of the basin modes. We recall that the oce-

anic basin modes, thanks to their multidecadal time

scales, are one of the proposed explanations for inter-

decadal climate variability.

In Sévellec and Fedorov (2013), the basin modes are

calculated using a realistic simulation of the North At-

lantic and a tangent linear model. The authors showed

that the least damped mode of their model has a maxi-

mum amplitude north of Newfoundland and south of

Greenland. This result is in reasonable agreement with

the location of the low frequency found in the idealized

studies of Colin de Verdière and Huck (1999) and Huck

et al. (2001). Since our local calculation shows that the

unstable regions are situated mainly at low latitudes and

certainly not north of Newfoundland, we therefore ask

the following question: what is the link between the

basin modes and the local unstable modes? The answer

to this question will be of great interest since the dy-

namics of the local mode is relatively simple to un-

derstand (as shown in this article), whereas the detailed

dynamics of the basin modes is quite opaque.

To progress in this direction, one needs to identify in

the equations of motion the terms that need to be added

to continuously transform the local modes into the basin

modes. The following terms are likely to play a role and

need to be studied: realistic boundary conditions, hori-

zontally variable mean flow, varying Coriolis parameter,

dissipation and diffusion, and spherical coordinates.
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