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Influence of bottom topography on large-scale
decadal basin modes

by Dhouha Ferjani1,2, Thierry Huck1 and Alain Colin de Verdière1

ABSTRACT
The influence of bottom topography on the generic properties of the baroclinic basin modes is inves-

tigated through linear stability analysis of a two-layer shallow water ocean model. Various idealized
bottom profiles imitating a mid-ocean ridge and continental slopes are analyzed in an extratropical
β-plane closed basin. Only large-scale features are examined, the eddy effects being parametrized as
turbulent eddy viscosity that allows the selection of large-scale eigenmodes. At coarse resolution, the
largest-scale lowest-frequency baroclinic modes appear as the least damped modes. For scales much
larger than the internal deformation radius, the damping rate is relatively independent of dissipation,
the mode energy—mostly potential—being depleted by lateral dissipation work. The damping rate of
the leading baroclinic mode is found to be weakly sensitive to bottom topography, while the decadal
period is shortened by bottom undulations. The mechanism of modal decay is rationalized through
energy and vorticity budgets for the barotropic and baroclinic components, to characterize the energy
routes and conversions. For small amplitude topography, the barotropic flow results accurately from
the interaction of the flat-bottomed baroclinic motion with the topographic height: it is found to be
three times stronger within closed potential vorticity contours than with blocked contours. However,
the conversion of energy from the baroclinic to the barotropic mode remains weaker than the frictional
processes.

1. Introduction

The effects of anthropogenically-forced climate change are expected to continue through
the 21st century and beyond (Solomon et al. 2011). On timescales of a few years to a few
decades, future regional changes in weather patterns and climate and the corresponding
impacts will also be strongly influenced by natural climate variations driven by the Atlantic
thermohaline circulation (Delworth et al. 2006). On interdecadal timescales, the existence
of this intrinsic climate variability known as the Atlantic Multidecadal Oscillation (Kerr
2000) has been demonstrated by numerous analysis of historical and climatological time
series, and in a broad range of ocean models. All these studies aim to better understand
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how the atmosphere or ocean varies on its own, under either thermodynamic or mechanical
forcing imposed by its counterpart, which is not a small issue regarding the wide range of
temporal and spatial scales and diverse physical phenomena.

The low-frequency ocean circulation is likely a major player, given its large heat capacity
and long adjustment. The latter is achieved through the baroclinic planetary waves that cross
the Atlantic basin in a few decades at mid-latitude. The baroclinic Rossby basin modes have
thus been proposed as a possible explanation for these variability signals: they are westward-
propagating Rossby waves reinitiated at the eastern boundary through rapid Kelvin wave
adjustment (LaCasce 2000) or nonresonant inertia-gravity wave response (Primeau 2002),
and owe their existence to mass conservation laws (Cessi and Primeau 2001). Their damping
rate is independent of friction when Rossby wave velocity depends on latitude, as in the
shallow water equations (Cessi and Louazel 2001).

Most of these studies examined the low-frequency large-scale basin modes as prototypes
for interdecadal oscillation from a quasigeostrophic point of view. Nonetheless, all of them
considered a flat bottom or a reduced gravity configuration so the effect of topography could
be ignored. For instance, several studies have explored the baroclinic response to wind-
forced circulation with idealized models. LaCasce (2000) and Cessi and Primeau (2001)
examined it in a different parameter range and with a square basin, while Primeau (2002)
and LaCasce and Pedlosky (2002) looked at baroclinic waves in closed basins, considering
also shallow water equations and irregular geometry. Spydell and Cessi (2003) together
with Ben Jelloul and Huck (2005) studied the time-dependent circulation in a closed basin
where the mean flow is specified. Specifically, they examined the large-scale baroclinic
eigenmodes of a two-layer rectangular basin over a flat bottom with a quasigeostrophic
model forced by surface wind stress.

It is then natural to wonder what effect the removal of these simplifications (quasigeostro-
phy, flat-bottom) might have on the structure of the baroclinic basin modes, given the well-
known tendency of the large-scale topography to couple the vertical modes. The importance
of bottom topography for the dynamics of the ocean has been pointed out by many authors
(e.g. Rhines 1969a,b; Ripa 1978; Mertz and Wright 1992). A baroclinic current flowing
over sloping bottom topography on the rotating solid earth can generate a barotropic flow
by releasing the available potential energy, a concept established by Sarkisyan and Ivanov
(1971) and called JEBAR (Joint Effect of Baroclinicity and Relief). This approach has
been a powerful tool to explain some fundamental mechanisms in the ocean circulation
such as the Gulf Stream transport magnitude and separation (e.g. Mellor et al. 1982). A
comprehensive description in the review of Rhines (1977) of the geostrophic turbulence
cascade first in a free configuration then in the presence of coastal boundaries and bottom
topography stresses the competition between the turbulent behavior and wave dynamics
in a flat-bottomed, homogeneous ocean creating a tendency to zonally elongated bands of
barotropic flow. The main effect of topographic roughness found in the quasigeostrophic
numerical experiments of free-decaying turbulence is a stabilization of the baroclinic modes
against the energy loss due to the nonlinear energy transfer into the barotropic mode. In a
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related study, Böning (1989) highlighted similar results using an eddy-resolving circulation
model, both driven by a steady zonal wind stress and by heat fluxes. Specifically, he argued
that the interactions of the deep current fluctuations with the synoptic-scale irregularities
of the ocean floor enhance the baroclinicity of the eddy field, whereas a strong tendency
toward barotropization is revealed in a flat-bottom solution.

The numerical solution of Barnier (1988) shows that free baroclinic Rossby waves can be
generated in the ocean interior by the wind or by an ocean ridge. In Tailleux and McWilliams
(2000), a freely propagating baroclinic eddy is depleted while propagating over a ridge as a
result of topographic coupling with the barotropic mode, suggesting that the energy transfer
can also occur in the opposite direction (i.e. from the baroclinic to the barotropic mode).

Winton (1997) investigated the qualitative effect of sidewall topography upon internal
decadal oscillations of the thermocline circulation, and showed its damping influence by
comparison with the response of the flat bottom experiment.

This study is motivated by the desire to pursue these investigations by considering the
influence of different finite-amplitude topographic features on the generic property of the
decadal oscillations as well as their damping. Specific questions of interest are: 1). What
drives the barotropic circulation in the linear regime in the absence of external forcing?;
2). What causes the damping of the low-frequency and large-scale baroclinic modes and
does the topography modify the baroclinic geostrophic adjustment time-scale? If so, in what
manner? To consider finite amplitude topography a shallow water model is needed. We use
here a two-layer shallow water model on top of various idealized bottom topography (bowl,
ridge) in order to characterize the large-scale, wavelike response in a closed ocean basin.
This model formulation allows also for a latitudinal variation of the Rossby radius which
is critical for the decadal variability of the ocean circulation. We have chosen to focus on
the large-scale regime and keep explicit mesoscale eddy resolution for later work.

We investigated the above issues through vorticity and energy budgets, considering their
vertical partition into barotropic and baroclinic modes. The material is organized as follows:
the model and configuration are presented in Section 2, vorticity and energy budgets are
described in detail in Section 3 and 4. Section 5 discusses the parametrization of unresolved
processes and Section 6 provides some conclusions.

2. Formulation and model description

We describe the model based on the two-layer shallow water (SW) equations with explicit
dissipation but no external forcing, and perform a linear stability analysis to extract the pure
baroclinic basin modes interacting with a specified bottom topography.

a. Two-layer SW equations

A simple theoretical model is constructed to address the effect of topography on unforced
modes. We seek insight into the mechanisms associated with the propagation and decay
of baroclinic planetary modes in the presence of large-scale bottom topography. The
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Figure 1. Schematic structure of the two-layer ocean model and notations.

applicability of quasigeostrophic models of β-plane oceans to such a study is limited, how-
ever, because on larger scales both the basic stratification and the topography have large
amplitude variations, in which the continuous stratification in the real ocean is modeled,
hereafter as two immiscible, vertically homogeneous layers.

The enclosed Cartesian β-plane ocean basin D = {0 ≤ x ≤ Lx, −Ly/2 ≤ y ≤ Ly/2}
is centered at 45◦N, extending from 15◦N to 75◦N and of 60◦ in longitude. The Coriolis
parameter f is linearized about a reference latitude so that f = f0 +βy, and β its latitudinal
derivative, is constant (β-plane approximation). In the absence of external forcing, the
equations of motion are:

Dtui + f k × ui = −∇ (
gη1 + δi2g

′(η2 − η1)
) + ν∇2ui, (1a)

∂thi + ∇ · (hiui) = 0. (1b)

The notation is standard, i.e. hi, ui denote the thickness and velocity of each layer i = 1, 2
and compose the state vector that we have to solve for. The unit vector k points upward, δij

the Kronecker delta operator, ρi the density in each layer, g the acceleration due to gravity
and g′ = g

ρ2−ρ1
ρ2

the reduced gravity. The dissipation in each layer is represented by a
horizontal Laplacian friction using ν as lateral eddy viscosity.

We denote by η1 the free surface elevation and η2 the interface displacement with respect
to undisturbed reference levels Hi . They are related to the total layer thicknesses by h1 =
H1 + η1 − η2 and h2 = H2 + η2 − b, such that h(x, y, t) = h1 + h2 = H0 + η1(x, y, t) −
b(x, y) corresponds to the total fluid layer thickness, with H0 = H1 +H2 being the constant
undisturbed fluid thickness (Figure 1). The bottom topography b(x, y) is measured from
the level surface lying at the bottom of the second layer.

For small disturbances to a stratified motionless background state, the linearized version
of (1) is obtained for the perturbation thickness h′

1 = η′
1 − η′

2 and h′
2 = η′

2:
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Table 1. Typical parameters for the experiment in the linear shallow-water model.

Symbol Value Description

f0 10−4 s−1 Coriolis parameter at y = 0 (45◦N)
β 1.6 10−11 m−1 s−1 Meridional gradient of Coriolis parameter
Lx 6600 km Basin zonal extent
Ly 6600 km Basin meridional extent
H1 1000 m Upper layer mean depth at rest
H2 3000 m Bottom layer mean depth at rest
H0 H1 + H2 Total mean depth at rest
ρ0 1023 kg m−3 Mean density
g 9.81 m s−2 Gravity acceleration at Earth surface
g′ = gΔρ/ρ 0.02 m s−2 Reduced gravity acceleration
ν 105 m2s−1 Laplacian eddy viscosity
nx × ny 60 × 60 Number of grid points in the horizontal

∂tu′
i + f k × u′

i = −∇ (
g(h′

1 + h′
2) − δi2g

′h′
1

) + ν∇2u′
i, (2a)

∂th
′
i + ∇ · [

(Hi − δi2b)u′
i

] = 0. (2b)

In the following, the primes are dropped for convenience. The appropriate internal
deformation radius for baroclinic modes over a flat bottom Rd(y) = √

g′He/f , where
He = H1H2/H0 is the equivalent depth, depends on latitude. Using typical parameter val-
ues, Rd = O(40 km) at midlatitudes and the corresponding long-wave limit of the baroclinic
Rossby wave westward velocity c = βR2

d is then a few 10−2 m s−1, leading to a decadal
scale basin crossing time (depending upon latitude).

No-slip boundary conditions are imposed on the lateral solid walls, i.e. u · n = 0, with n
the vector normal to the boundaries, to ensure mass conservation.

The approach of Huck et al. (1999) is used to parametrize the horizontal flux of momentum
due to the mesoscale eddies with a Laplacian friction closure. This form of dissipation is
enforced here as a filter to select large-scale modes through their lowest damping rate (Huck
and Vallis, 2001).

Given the horizontal resolution Δx large compared to the oceanic internal Rossby radius,
we follow current practice to determine the viscosity coefficient as a function of the hori-
zontal resolution ν > 1.6 βΔx3 (m2 s−1) to insure that the model correctly resolves Munk’s
boundary layer δM = (ν/β)1/3. The implied horizontal mixing of momentum is then much
larger than expected or estimated from eddy processes, and the actual western boundary
currents remain in a viscous regime in the present model. Although the friction coefficient is
large, interior flows of scale L are geostrophic to order ν/f L2, a ratio of friction to Coriolis
terms. For L of order 1,000 km, this ratio is less than 1% for the values used here. Such
values along with those appended in Table 1 are within the observational range and used as
pivots around, which other regimes are explored.
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Figure 2. Analytical bottom topography profiles corresponding to 1,500 m amplitude height (MOR
dashed, CR dash-dotted). The dashed line denotes the interface level at rest measured from the
bottom mean depth.

Sensitivity tests to the form and height of the topographic features are carried out by
implementing two idealized bottom profiles (Figure 2) along with quantitative comparisons
with the flat bottom experiment. The first experiment implements a gaussian shape Mid-
Ocean Ridge (MOR) in the x-direction, centered in the middle of the basin, that we expect
to disturb Rossby waves westward propagation. Such a simple approach offers the ability
to assess the sensitivity of the solutions to parametrizations of unresolved processes. The
second experiment implements a gently sloping bowl-shaped topography, called Continental
Rises (CR). In all cases, the e-folding scale of the bottom elevation is around one third of the
basin zonal extent with a height spanning from 0 to 2,500 m. The bottom depth is adjusted
such that the basin volume remains constant.

b. Linear stability analysis

The principle of the linear stability analysis used herein to find out the wave modes is
to examine the evolution of a small perturbation about a steady state, taken here at rest.
The linearized prognostic equations (2) of the model can be written as a general dynamical
system:

∂tX = JX, (3)

where J is the Jacobian matrix and X = (hi, ui ) is the state vector. Assuming that the
solution has a wave-like form:

X =
[
hi

ui

]
(x, y, t) = eωt

[
ĥi

ûi

]
(x, y), (4)
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the eigenvalue problem of the perturbations simply reads ωX = JX, with ω the eigenvalue
and J the nonsymmetric Jacobian matrix. Two methods have been implemented, one based
on the explicit Jacobian of the model, the other on the linear tangent model. In the first
case, the Jacobian matrix of the linear system is explicitly computed from the finite differ-
ence formulation of the equations on an regular Arakawa C-grid with a 60-point standard
resolution in each direction. Its leading eigenvalues (typically 30) based on the largest real
part are computed using Arnoldi’s method as provided in ARPACK (Lehoucq et al. 1996).
This method is limited by the size of the explicit Jacobian matrix. In the second case, the
tangent linear model is used to compute the leading eigenvalues of the propagator M(τ)

over a ’short’ integration time (τ = 0.1 yr here) with ARPACK:

X(t = τ) = M(τ) X(t = 0) = eJτ X(t = 0), (5)

where the initial perturbations X(t = 0) are provided by the Arnoldi method. The same
spatial discretization is used with centered second-order advection and diffusion schemes,
whereas the temporal scheme is second-order with an Asselin time filter. The Jacobian
eigenvalues ω are then computed from the propagator eigenvalues eωτ. We have checked
that the results are not sensitive to the integration time τ over a large range of values,
small compared to the baroclinic Rossby basin crossing time, but large with respect to the
gravity waves basin crossing time. This latter method is much more efficient, and avoids
the computation of the explicit Jacobian matrix, hence allowing a much larger number of
model grid points (up to 300 in each direction).

Unless otherwise specified, our solutions are obtained in an idealized basin with the
typical parameters listed in Table 1. Solutions are extremely stable with the horizontal
resolution, with variations of a few percent in eigenvalues. We perform the linear stability
analyses for the flat-bottom case and the two forms of bottom topography with increasing
amplitudes. In all cases, the eigenvalues display a negative real part (stable damped modes)
with several ones having a rather small negative real part, hence representing weakly damped
modes on time scales of decades. In the following, we examine the characteristics of the
least damped basin modes that have large spatial scale and decadal timescale as function of
the bottom shape and height. Table 2 gives the eigenvalues of the two least damped modes
and Figure 3 shows the patterns of the gravest mode.

Since the physical model solution must be real, the complex conjugate eigenvalues (ωr ±
iωi) are associated with complex conjugate eigenvectors (Vr ± iVi). Letting aside the
damping rate, which only modulates the amplitude of the oscillation, the time evolution due
to the imaginary part of the eigenvalue follows:

X(t) = Xr cos(ωi t) − Xi sin(ωi t), (6)

which yields a temporal sequence Xr → −Xi → −Xr → Xi every quarter period for a
positive ωi . The real and imaginary parts of the least damped basin mode eigenvalue of the
topographic experiments show slight changes by about 10 to 15% compared with that of
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Table 2. First two eigenvalues of the tangent linear model matrix under three different topographic
features: flat, meridional ridge and continental rises. The damping time scale is defined as τ = 1/ωr

and the oscillation period T = 2π/ωi .

ωr ωi τ T
Mode (yr−1) (yr−1) (yr) (yr) τ/T

Flat case 1 −0.2025 0.3652 −4.93 17.21 0.2860
2 −0.2867 0.7370 −3.48 8.52 0.4080

1500 m-MOR case 1 −0.2276 0.4261 −4.39 14.74 0.2970
2 −0.3273 0.7483 −3.05 8.39 0.3635

1500 m-CR case 1 −0.2177 0.4471 −4.59 14.05 0.3260
2 −0.2260 0.9060 −4.42 6.93 0.6370

the flat bottom experiment. A large scale pattern intensified in the north-west quarter of the
domain characterizes the three experiments (flat, mid-ocean ridge and continental slopes).
Figure 3 displays the spatial structure of the least damped mode in the case of 2,500 m bottom
height experiment compared with the flat bottom case. In this steep topography limit, the
topographic β effect f ∇h/h is greater than the planetary β, yet the spatial structure shows
minor changes compared to the flat-bottomed baroclinic mode. The propagation of long
Rossby waves remains westward and nondispersive as in the flat-bottom case, evidencing
the robustness of planetary modes to topographic features. The propagation with Hovmöller
diagrams (i.e. longitude-time plots) sketched in Figure 4 confirms this statement and shows
a rather regular pattern of westward propagating waves with a phase tilt consistent with
the long baroclinic Rossby phase speed c of 2.57 × 10−2 m s−1 at 30◦N. A comparatively
strong signal compared to the interior is also trapped in a thin Munk-type western boundary
layer.

In the presence of topography, the differences with the flat bottom propagation are three-
fold: 1). an amplification of the oscillation amplitude over the bottom relief; 2). a shortening
of the oscillation period revealing an enhancement of the propagation speed in agreement
with Tailleux and McWilliams (2000) and; 3). a strengthening of the oscillation damping
rate. With continental slopes, the baroclinic mode appears relatively less damped with a
shorter propagation period and a longer decay time with respect to the mid-ocean ridge
mode.

3. Linear vorticity balance

Apart from frictional interaction with the boundaries, losses from baroclinic flow to
barotropic dynamics take place when both topography and stratification are present,
although the rates and mechanisms by which this occurs are uncertain. The resolution
of this issue is however essential for the advancement of modeling parametrizations. In
order to better understand how the barotropic mode is built-up by the interaction of the
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Figure 3. Real parts (left) and imaginary parts (right) of the least damped eigenvector for the upper and
bottom layer thickness anomalies in the presence of different bottom profiles. The mode amplitude
is arbitrary. Negative (positive) contours are dashed (solid) and the zero contour is dotted.
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Figure 4. Hovmöller diagrams at 30◦N for the sea level anomaly of the non-decaying propagating
least damped basin mode in the presence of a flat bottom, a ridge (MOR) and continental slopes
(CR). Superimposed are straight lines for the standard phase speed (solid) and enhanced phase
speed west of the topographic obstacle (dashed). The overlaid arbitrary heights of the bottom are
drawn to indicate the correlation with the changes in the propagation speed. Time is scaled by the
period of the flat-bottomed least damped mode.

baroclinic mode with the topographic constraint, the vorticity equation for the vertically
averaged flow is examined. For each variable, we note X+ the vertically averaged compo-
nent defined as hX+ = h1X1 +h2X2, and X− = X1 −X2 its baroclinic counterpart (so that
X1 = X+ + h2

h
X− and X2 = X+ − h1

h
X−). Vertical integration of the linear momentum

balance (2a) provides the equation for the horizontal transport (hu+):

∂t (hu+) + f k × (hu+) = −H0∇p+ + b∇p2 + F, (7)

where the vertical integration of the pressure term can be decomposed as barotropic pressure
and bottom pressure, and F is the vertical integral of lateral friction.

The linear vorticity equation follows by taking the curl of (7):

∂tζ
+ = −f ∇ · (hu+) − βhv+ + J (b, p2) + k · ∇ × F. (8)
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This equation expresses the fact that the local rate-of-change of the vertically integrated
vorticity is caused by the planetary vorticity tendency, the effect of the bottom pressure
torque, curl (b∇p2), and lateral friction torque. The detailed derivation of (8) is given
in Appendix A. Here ζ+ = ∂x(hv+) − ∂y(hu+) is the relative vorticity of the vertically
integrated transport; J (b, p2) represents the Jacobian of the bottom height and the bottom
layer pressure, referred to as the JEBAR term (Mertz and Wright 1992). For large scale
solutions slowly varying in time, the horizontal velocity is in geostrophic equilibrium. In
the lower layer, the (geostrophically balanced) Eulerian velocity uG

2 is related to the bottom
pressure torque −f uG

2 ∇b = J (b, p2). Further manipulating this term with respect to the
barotropic and baroclinic components of the flow uG

2 = u+ − h1
h

u−, and making use of the
depth-integrated continuity equation gives:

∂tζ
+ = f ∂tη1 − βhv+ − f u+∇b + H1

h
J (p−, b) + k · ∇ × F. (9)

Equation 9 is the form of the linear vorticity equation obtained by enforcing the free surface
pressure formulation instead of the often-used rigid lid approximation. Time derivatives
are O(10−2) compared to the other terms, while the friction is only relevant in the western
boundary layer, they can then be safely neglected in (9), which finally reduces to:

J

(
ψ+,

f

h

)
= H1

h2
J (p−, b). (10)

This form of linear vorticity equation is appealing because it makes explicit the concept that
the bottom pressure torque (or JEBAR effect) forces the barotropic transport across f/h

contours. It is obtained by assuming the nondivergence of the vertically-integrated horizontal
transport k × ∇ψ+ = hu+. The extent to which the generated barotropic circulation is
sensitive to bottom topography depends crucially on the bottom height. We verify this
result analytically by considering the topography as a small perturbation over a flat bottom
h = H0 so that ε = b/H0 � O(1) and solve (10) by a weakly nonlinear expansion in
power of ε for ψ+, p− and b:

ψ+ = ψ+
0 + ε ψ+

1 + ε2 ψ+
2 + . . . ,

p− = p−
0 + ε p−

1 + ε2 p−
2 + . . . ,

b = b0 + ε b1 + ε2 b2 + . . . ,

where p−
0 represents the baroclinic pressure of the purely baroclinic flow (ψ+

0 = 0) over
the flat bottom (b0 = 0). At first order, (10) becomes:

β∂xψ
+
1 = H1

H0
J (p−

0 , b1), (11)

This is a Sverdrup type equation that can be integrated from the eastern boundary where
the normal component of the velocity vanishes at the east coast (ψ+ = 0).
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From (11), it is then obvious that the barotropic mode vanishes with vanishing topogra-
phy. The governing equation (11) together with the boundary condition form a well-posed
system away from the western boundary. The barotropic transport streamfunction is now
determined diagnostically and compared to the one derived from the barotropic transport
(Ψ+) of the actual solution with variable topography.

For a bottom height up to 1,000 m (ε = 0.125), the two large-scale patterns related
to the interior planetary geostrophic approximation and the full problem display strong
agreement (rms<11%), despite some discrepancies near the western boundary layer where
the friction—not considered in (11)—becomes important. Only the case of a 500 m CR-
experiment is shown in Figure 5 but the same conclusion holds for the MOR-experiment:
the barotropic mode is accurately diagnosed through the interaction of the flat-bottomed
baroclinic mode with the imposed topography elevation.

The spatial distribution of the approximated barotropic streamfunction is examined in
the case of a meridional mid-ocean ridge (Figure 6). When the baroclinic flow ascends the
eastern flank of the ridge, the JEBAR term generates positive vorticity at the northern half
of the ridge. This vorticity input allows barotropic currents to cross the PV contours, instead
of just following them. The opposite process happens when the flow travels farther over the
western flank of the ridge. Accordingly, a barotropic cyclonic gyre is generated over the
ridge together with an anticyclonic gyre just to the south. The barotropic structure obtained
in the north-west corner produces an eastward jet under the effect of only the JEBAR term,
in a way similar to the classical wind-driven double gyre structure (Holland 1978; among
many others). A similar argument holds for the case of a bowl-shaped topography where
the western half of the ridge is equivalent to the eastern continental slope. Notice that
the orientation of the generated barotropic jet is defined by the perturbation sign. That is
for an opposite-sign perturbation, the barotropic jet would point westward. This situation
is similar to the strong jetlike current formation between two opposite sign eddies under
the interaction of a current with a seamount (Verron and Le Provost 1985; Herbette et al.
2003).

4. Mechanisms of modal decay

The consideration of energetics is essential to establish the mechanism of modal decay.
This mechanism has been elegantly tackled by Cessi and Louazel (2001) in the case of a
reduced gravity basin. They found the decay rate to be independent of friction as long as
the latter remains weak, and uniquely established by the difference between the slowest
and fastest long Rossby wave speeds in the inviscid limit. The damping arises through the
tilting of the wavefronts by the latitudinal variations of Rossby waves phase speed that
get partially absorbed on the western boundary. This case is considered as the simplest
although enlightening model: the energy balance of the baroclinic mode consists of a pre-
dominant reservoir of available potential energy APE (of order (Lx/Rd)

2 times the kinetic
energy in the large-scale ocean circulation, (Gill et al. 1974)) converted into eddy kinetic
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Figure 5. Real parts (left) and imaginary (right) parts of the barotropic transport streamfunction in
the CR-experiment: a). as obtained from the vertically integrated horizontal transport (upper panel)
and b). diagnostically calculated using the JEBAR term in Equation (11) (bottom panel). A weak
topography amplitude ε = 0.125 is used. Note the approximated solution b). does not resolve the
western boundary current, so no good agreement is expected there.

energy EKE and dissipated by linear friction. The damping time scale ωr is simply the
ratio −2rEKE/APE, in which r is the linear drag coefficient. However, in our calculations,
the problem is a little more complicated, as it also takes into account the interaction of
the two active layers with a realistic bottom topography. Hence, apart from the Laplacian
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Figure 6. Barotropic transport streamfunction derived from (10) in the 500 m-MOR experiment as
a function of time for one oscillation cycle. The region of negative values are in blue and positive
values are in red.. Time is scaled by the period of the flat-bottomed least damped mode. Around
half the oscillation cycle, the generated barotropic perturbation is strongly weakened by viscous
processes.

viscous dissipation that we include to neutralize short scale instabilities, the modal decay
is expected to be conditioned also by the effect of bottom variations.

Before calculating the energy generation/dissipation terms, we present the formulation
of the vertical mode partition of the total energy of the model. Multiplying the vertically
integrated momentum equation (7) by u+ gives the temporal evolution of the barotropic
energy (details of the calculation can be found in Appendix B):

1

2
h∂t |u+|2 + 1

2
g∂tη

2
1 = −∇ · (h p+u+) + h2

h
p−∂tη1 + p−u+ H1

h
∇b + LF+. (12)

Similarly, subtracting the upper layer momentum equation (2a) from the bottom one, then
multiplying the result by heu− yields the temporal evolution of the baroclinic energy:
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1

2
he∂t |u−|2 + 1

2
g′∂tη

2
2 = −∇ · (hep

−u−) − h2

h
p−∂tη1 − p−u+ H1

h
∇b + LF−, (13)

where he = H1h2/h represents the total equivalent depth, h2 = H2 − b, h = H0 − b

being the spatially-varying undisturbed fluid thicknesses for the bottom and the total layer
respectively. The formulation of the two-layer SW in terms of perturbation elevations of the
surface and interface around their resting position is powerful, as it makes the calculation
of kinetic energy and available potential energy straightforward. The former characterizes
the work needed to accelerate the fluid from rest to its stated velocity, the latter defines
that portion of potential energy used to level the layer interface adiabatically away from its
resting flat position. Hence, information about the energy cycle of the free least damped
basin mode may be obtained from each of the work terms in equations (12) and (13). The
integration of these terms over one oscillation period permits to address the energy routes
of the flow perturbation, as well as its vertical conversion. The terms representing energy
exchange between the different forms of potential and kinetic energy appear with opposite
signs so they cancel one another out, as required, given that the system is energy-conserving
in the inviscid limit.

We define the time average of any quantity G(x, y, t) over the oscillation period T by

G = 1

T

∫ T

0
G(x, y, t ′) dt ′, (14)

and the domain average by

< G > = 1

LxLy

∫ Lx

0

∫ Ly/2

−Ly/2
G dx dy. (15)

The real physical solution being u = 	(û eωt ), the kinetic energy is obtained by multi-
plying the complex momentum equations by the complex conjugate of the velocity û∗ and
then adding this to the product of the complex conjugate of this equation with û. The time
evolution for the kinetic energy follows:

	(ω)

(
1

2
û∗û

)
, (16)

with KE = 1
2 |u2| the perturbation kinetic energy per unit mass, and 	() indicates the real

part. Similarly, the continuity equation expressed in terms of the vertical displacement of
the interfaces is multiplied by the complex conjugate of the layer interface and added to
the complex conjugate of this entire quantity, to obtain the time evolution for the available
potential energy, following:

	(ω)

(
1

2
η̂∗η̂

)
, (17)

with APE = 1
2η2 the perturbation available potential energy per unit mass.
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Figure 7. Coupling mode term PF subject to Equation (18) in the two cases of bottom topography.
Overlaid are the geostrophic contours f/h2.

The time-rate-of-change of the perturbation total energy can be computed with (16) and
(17), and the basin-integrated total energy budget (12) and (13) becomes:

ωr (〈KE+〉 + 〈APE+〉) = −〈h2

h
p−ωrη1〉 + 〈H1

h
p− u+∇b〉 + LF+,

ωr (〈KE−〉 + 〈APE−〉) = −〈h2

h
p−ωrη1〉 − 〈H1

h
p− u+∇b〉 + LF−. (18)

The first term on the rhs of (18) corresponds to the contribution of the free surface variation
to the work of the pressure forces. This term is almost negligible, contributing less than one
percent to the energy budget. This smallness justifies the rigid-lid approximation. The second
term corresponds to the contribution of the bottom topography variation to the work of the
pressure forces. This term, called PF hereafter, appears with an opposite sign in the vertical
partition of the energy and allows for the energy conversion between the vertical modes
with variable bottom topography. The source/sink work terms for the barotropic/baroclinic
energy that occur in (18) then reduces to:

PF = 〈H1
h

p− u+∇b〉 = 〈H1
h

	(p−u+∗)∇b〉A,

LF− = ν〈heu− ∇2u−〉 = ν〈he	(u− ∇2u−∗)〉A,

LF+ = ν〈u+ (H1∇2u1 + h2∇2u2))〉 = ν〈	(u+ (H1∇2u∗
1 + h2∇2u∗

2))〉A,

(19)

in which A = (e2ωr T −1)/2T . In an ocean basin with variable topography and stratification,
the work of the pressure forces in the fluid interior lead to an energetic attenuation of the
baroclinic field by releasing the available potential energy. In a flat bottom ocean, the
pressure forces cannot do work on the barotropic mode and the conversion is zero. In order
to gain further insight into the coupling between the vertical modes, the term PF is shown
in Figure 7.

For the simplest case of the ridge topography, the coupling acts as a sink (source) of
baroclinic (barotropic) energy where the bottom slope is negative, that is on the eastern
flank of the ridge, and a source (sink) where the bottom slope becomes positive, that is
on its western flank. Overall, the sink of the baroclinic energy is greater than the source
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Figure 8. Vertical mode kinetic energy conversion (scaled by the total KE) of the least damped basin
mode over the oscillation period as function of the topographic height. The dashed (solid) line
corresponds to the MOR (CR) experiment, while the circle (cross) labels the barotropic (baroclinic)
mode.

particularly in the CR-experiment, suggesting that the coupling term contributes to weaken
the baroclinic mode by generating a barotropic circulation.

The amplitudes of the kinetic energy conversion in the different topographic experiments
are shown in Figure 8. The resulting barotropic circulation is substantially sensitive to the
form of topography: around 10% (25%) of the kinetic energy of the baroclinic mode is
converted into barotropic mode under the effect of 1,500 m-high MOR (CR) topography,
over one oscillation period.

The working terms contributions to the damping rate ωr are identified by dividing each
value in (19) by the total energy E to overcome the arbitrary amplitude of the mode.
The box diagrams depicted in Figure 9 display the basin-integrated energy budgets for
the least damped basin mode: they show the energy conversion between the reservoirs of
available potential energy (APE), the barotropic kinetic energy (KE+) and the baroclinic
kinetic energy (KE−) for the flat-bottom, MOR-bottom, and CR-bottom cases. The link
between KE+ and KE− is provided by the pressure forces via the interaction with the
APE reservoir through the work of the JEBAR term. In the MOR-bottom case, 90% of the
KE− of the system is dissipated by lateral friction and less than 10% is withdrawn and
deposited in KE+ under the pressure forces. It seems also that the energy flow along the
pathway KE− → APE → KE+ is substantially stronger in the bowl-shaped topography
experiment due to closed PV contours along which the energy conversion occurs more
efficiently.
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Figure 9. Perturbation energy box diagram showing the baroclinic total-drag energy route for the
least damped basin mode. Energy budgets are evaluated after taking the volume integral in the
global domain based on (18) as detailed in section 4.2. Energy conversion terms are normalized by
ωr . The direction of energy conversions are indicated by the arrows. Unbalanced budgets are due
to numerical truncation errors.

From the above calculations, it is clear that in some instances the topographic conversion
of the least damped baroclinic mode into barotropic circulation is more efficient with closed
potential vorticity contours than with blocked contours at the boundaries. One reason could
be that the structure of the mode is modified by the topography near the boundaries, such
that the viscous dissipation of the cross-shore velocities along slanted Rossby wave crests is
reduced in favor of a conversion into barotropic energy through the JEBAR work. Indeed, a
fraction of the baroclinic energy propagating westward is converted into barotropic energy
over a variable bottom topography, the other runs along the western boundary following
closed PV contours. Thus, the mode experiences less frictional interaction with the boundary
than the ones running into the coast following blocked PV contours at the boundary, as it is
the case for the flat-bottom and the mid-ocean ridge. The damping rate of the baroclinic mode
no longer stems only from the absorption of long Rossby waves in the western boundary
layer due to the tilting of the wavefronts. The latter arises because of the differential phase
speed, as it is the case for our flat bottom and MOR experiments, as well as the reduced
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gravity of Cessi and Louazel (2001). Rather, the damping rate is also modulated by the
shape of mean PV contours along the western boundary (CR topography case).

However, this argument becomes more subtle for a mixed topography taken to be the
sum of the previous ones. To demonstrate this, we repeat the same calculations with a 1,500
m-[MOR + CR] bottom height and take a look at the energy transfer terms. The energy
box diagram of the least damped basin mode shows a barotropic conversion of only 27.7%
compared to 71.8% dissipated by lateral friction. This increase of dissipation by the small
scale-selective harmonic friction term may be understood as a consequence of the enhanced
topographic scattering of the flow into smaller scales.

Hence, the energy budget demonstrates the weak effect of topography through the ver-
tical mode coupling under a catalyst of sloping bottom topography, compared to frictional
processes on the thermal structure (i.e. the baroclinic response). This conclusion agrees
fairly well with two-layer calculations of Anderson and Gill (1975) and the more realistic,
though still linear, calculation of Bryan (1969).

5. Parameter sensitivity analysis

We have addressed the effect of topography on baroclinic unforced modes with a particular
focus on the mechanisms affecting their decay. The potential effect of topography is the
damping of the gravest baroclinic mode, as suggested in other works (e.g. Greatbatch et al.
1997; Winton 1997; Buckley et al. 2012). This damping is found to be sensitive to the form
of the topographic features, although it remains smaller than the viscous decay at first order
even with large amplitude topography.

Given the expense that investigating the linear stability analysis with a broad range
of parameters would entail, we were limited to low resolution that required the use of
an eddy coefficient unrealistically large to maintain the numerical stability and suppress
accumulation of energy in the smallest unresolved scales. At higher resolution though, we
wonder if our finding relative to the predominance of the viscous sink, with respect to the
topographic dissipation remains relevant in the limit of weak friction. The issue then would
be how to select the largest scale modes among numerous structures.

We consider successively the influence of a). additional layer thickness diffusion, b). a
decrease of the eddy viscosity, and c). variation of the internal Rossby radius.

a. Sensitivity to dissipation parametrization

Because dissipative scale selection is the essential ingredient for the segregation of basin
modes, it is important to verify that the results are robust to changes in the form of friction.
To address this question, we proceed to an additional set of computations in which thickness
diffusion λ∇2h is appended in the continuity equation in order to investigate the behavior
of the damping rate and oscillation period of the decadal variability in response to various
dissipation parametrizations. We carried out linear stability analysis for the three bottom
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Figure 10. Sensitivity of the (top) oscillation period and (bottom) decay time (in years) to (left)
horizontal viscosity ν for a fixed value of diffusivity λ = 2 × 103 m2s−1, (right) horizontal
diffusivity λ for a fixed viscosity ν = 104 m2s−1, in the flat bottom (dash-dot cross line), the 1,500
m-MOR (solid plus sign line) and the 1,500 m-CR (solid circle line).

profiles (i.e. flat, MOR and CR) by using ν and λ as control parameters. In the first experi-
ment, the horizontal eddy viscosity is decreased from 8×104 m2s−1 down to 0 m2s−1 while
λ is kept fixed at 2×103 m2s−1. In the second experiment, ν is reduced to 104 m2s−1, while
λ is gradually increased to test the possibility of replacing the initial strong friction with a
moderate amount of viscosity and diffusivity. The decay time and period corresponding to
the decadal variability for the two experiments are shown in Figure 10. Whatever the pre-
scribed topography is, the horizontal eddy viscosity is found critical for the selection of the
decadal period while the horizontal diffusivity only impacts the damping rate. Decreasing
ν results in a more complex flow behavior, which might hamper the interpretation of the
variability considerably. However, increasing the horizontal diffusivity λ only enhances the
dissipation of the baroclinic variability.

A summary of all the experiments is depicted in Figure 11 in which one can follow the
different branches of the least damped decadal mode eigenvalue in response to changing
model parameters. This diagram confirms the weak effect of the topography with respect
to frictional and diffusive processes. The diffusion appears more likely to affect the decay
rate while the friction strongly monitors the oscillation period of the variability on decadal
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Figure 11. Sensitivity diagram in the ωr − ωi plane for the least damped oscillation under different
prescribed forms and amplitudes of topography and dissipation. The eigenvalue change under
increasing (decreasing) diffusivity (viscosity) is dashed (dash-dotted). The solid black (gray) line
indicates the effect of increasing MOR (CR) height.

timescales, at least in the case of coarse resolution. But does this still hold if the deformation
radius is resolved?

b. Sensitivity to momentum dissipation

To clarify this point, we take a closer look at the effect of unresolved deformation Rossby
radius on the behavior of the flat-bottomed basin mode patterns through a sensitivity exper-
iment to friction. Specifically, the low-frequency least damped basin mode (corresponding
to the largest real part eigenvalue) is therein tracked using its decay rate as a selection
criterion while progressively decreasing the viscosity till the inviscid limit is reached. At
this limit, the frequency of the least damped mode in the vicinity of inviscidness (ν = 10
m2s−1) is used as a selection criterion instead of its decay rate. In the ultra-low to low
friction values, spurious modes prevent the capturing of the physical modes. The transition
from the numerical regime to the physical regime does occur under a friction magnitude
roughly corresponding to O(βΔx3) at which the numerical period coincides well with the
reference proposed by Cessi and Louazel (2001) as the time it takes for the long Rossby
wave to cross the basin along the northernmost boundary, TN = Lx/βR2

d (Figure 12). For
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Figure 12. Least damped eigenmode frequency (solid line) and decay rate (dashed line) (yr−1) as
function of horizontal eddy viscosity ν in the flat bottom experiment. The red (blue) curve indicates
the realistic (enhanced) stratification experiment. The magenta line corresponds to the reference
frequency 2π/TN of the realistic stratification experiment.

high viscosity values, the numerical period starts progressively to deviate from the reference
as a result of the widening of the western boundary layer that reduces the zonal basin extent.
This conclusion points out that the period of the least damped basin mode depends also
on an “effective zonal basin extent” defined as Lx − δM , rather than the geometric zonal
basin extent, in a way similar to the effective northern boundary mechanism introduced
by Yang and Liu (2003) for the establishment of the reference period in the shallow water
framework. However, this high friction regime is completely irrelevant to the real ocean.

c. Sensitivity to internal deformation radius Rd

We repeat the same experiment, but for the case of a resolved deformation Rossby radius
obtained by enhancing the stratification by two orders of magnitude. Rd is now ten times
larger than the real value, but allows for an adequate resolution of motions on the scale
of the Rossby radius of deformation without refining the horizontal model resolution. The
reference oscillation period is then accordingly two orders of magnitude smaller. The results
show that the period of the least damped basin mode remains constant with decreasing
viscosity, in contrast to the realistic though unresolved Rd experiments where the decadal
period is lost in the low friction regime (Figure 12).

Furthermore, large-scale structures do emerge in the inviscid limit (Figure 13) as well
as at low and moderate viscosity values: this large-scale signal was spoiled by spurious
(numerical) noise in the realistic stratification experiment when the viscosity was too low.
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Figure 13. Spatial pattern of the least damped mode in the inviscid limit (ν = 0 m2 s−1) for the
resolved Rossby radius experiment. The mode amplitude is arbitrary.
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However, the structure of these modes differ noticeably from the initial baroclinic basin
modes: the wavefront is no longer slanted but their amplitude tends to zero towards the
eastern and western boundaries; the immediate consequence is that their damping rate is
no longer set by their large-scale structure but decreases with momentum dissipation. This
suggests that with higher horizontal resolution allowing to resolve the deformation radius,
eddy viscosity would not be necessary to select the largest scale decadal modes.

In summary, the previous numerical experiments suggest that in some instances (i.e.
in eddy-resolving models), explicit dissipation is actually not a necessary condition for
selecting large scale basin modes. Large-scale, low-frequency modes emerge from the
inviscid spectrum with the gradual addition of weak dissipation, and their structure is robust
to the specific form of friction. It is then reassuring that under-resolving the deformation
radius in a viscous basin does not alter the robustness of decadal basin modes. In response to
a reviewer comment, we implemented other types of momentum dissipation, namely linear
Rayleigh friction, and vertical eddy viscosity with linear bottom friction, instead of the
Laplacian eddy viscosity. In the first case, the results were very similar, suggesting that
the modal decay is independent of the type of momentum dissipation. In the latter case,
the convergence of the eigenvalue computation only happens with rather large friction and
viscosity coefficients.

6. Conclusion

We have analyzed the low-frequency, weakly dissipated basin modes in a two-layer
ocean over a variable bottom topography. These large-scale modes with decadal periods
are promoted through eddy viscosity at coarse resolution. The modes just described are
the topographic analog of the reduced-gravity basin modes described by Cessi and Louazel
(2001), Primeau (2002) and Yang and Liu (2003).

At midlatitudes, the gravest baroclinic mode is established through the transit of a mixture
of Rossby and Kelvin waves during the geostrophic adjustment process. The frequency of
the least damped mixed-wave mode scales as 2π/TN , where TN is the long Rossby wave
transit time along the northernmost boundary of a basin that does not feel the topography and
falls near the decadal frequency. In the presence of topography, the period for the gravest
basin mode is slightly shortened suggesting a net acceleration of long Rossby waves by
bottom tops as pointed out by Tailleux and McWilliams (2000).

Through a systematic comparison of the results of various topographic features, the
parameter sensitivity analysis enables us to determine which processes are critical to the
variability. Changes in horizontal diffusion was shown to have no crucial influence on the
gravest baroclinic mode of ocean variability. However, varying both amplitudes of viscous
momentum dissipation and bottom topography exerted a leading damping role upon the
baroclinic large-scale circulation. The build-up of a barotropic flow through the interaction
of the flat-bottomed baroclinic mode with the prescribed topographic height is three times
stronger in the case of continental rises, that constrain PV contours to close, than that
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related to the mid-ocean ridge that imply blocked contours at the boundaries. However,
the baroclinic energy decay through topographic vertical mode conversion remains smaller
with respect to the viscous dissipation. Compared to the flat bottom case, changes in the
eigenvalues remain lower than 10% in terms of the oscillation period and 20% for the
damping time scale, even with large amplitude topography (up to 2,500 m height).

In contrast with our initial hypothesis, the broad message emerging from the present
work suggests that the direct bottom topography damping on the basin modes is limited,
and changes in the mean flows due to the topography may have more influence on the
modes characteritics. It remains to be seen how the introduction of a mean flow, with the
associated mesoscale dynamics, would interact with the bottom topography to excite or
damp the large-scale decadal basin modes. We conjecture that large-scale stationary mean
flow forcing (either by winds or heat fluxes) may well act to sustain the decadal mode
(through large scale instability for instance) and to confirm the robustness of its signature,
thus contributing to the decadal band of climate variability.
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APPENDIX A

Barotropic transport budget

Starting with vertically integrating the momentum equation (2a) of the horizontal trans-
port gives

∂thu+ + f k × hu+ − u1∂th1 − u2∂th2 = −(H1 + η1 − η2)∇p1

− (H2 + η2 − b)∇p2 + F+. (20)

Knowing that p1 = gη1 and p2 = p1 + g′η2, the pressure term in the rhs of (20) can be
expressed as

−(H1 + η1)g∇η1 − g′η2∇η2 − H2∇p2 + b∇p2, (21)

which can be rewritten as:

−∇
(

H1p1 + 1

2
gη2

1 + 1

2
g′η2

2 + H2p2

)
+ b∇p2, (22)

Equation (20) now reduces to

∂thu+ + f k × hu+ + N = −∇(H0p
+ + χ) + b∇p2 + F+, (23)

in which the nonlinear term N = u1∇ · (h1u1) + u2∇ · (h2u2) represents the advection of
perturbation thickness by the flow in each layer. Since η1 � η2, this term then reduces to
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the effect of advection of interface anomaly by the baroclinic flow. This effect is assumed
to be neglectable as long as the perturbation remains small compared to the undisturbed
reference levels. The vertically integrated pressure gradient splits into three terms related
to the barotropic pressure, the vertically integrated available potential energy χ = 1

2gη2
1 +

1
2g′η2

2 and the bottom pressure. By neglecting the nonlinear term N before taking the curl
of the depth-integrated momentum balance, the linear barotropic vorticity budget can then
be derived as in Section 3.

APPENDIX B

Vertical mode energy partition

The barotropic motion equation is obtained by vertically integrating of the momentum
balance:

∂tu+ + f k × u+ − u1∂t

(
h1

h

)
− u2∂t

(
h2

h

)
= −∇p+ + p1∇

(
h1

h

)
+ p2∇

(
h2

h

)
+ F+.

(24)

It gives after some simple algebraic manipulation:

∂tu+ + f k × u+ + M = −∇p+ + p−

h

(
h2∇η1 − ∇η2 + h1

h
∇b

)
+ F+, (25)

where M = u−∂t

(
η2
η1

)
represents the advection of perturbation thickness ratio by the baro-

clinic flow similarly to term N in (23). It could then be neglected as long as the perturbation
remains small compared to the undisturbed background state. For finite amplitude topog-
raphy variations, low frequency, small waves, the leading order terms in (25) reduce to:

∂tu+ + f k × u+ = −∇p+ + H1

h2
p−∇b + F+. (26)

Hence, the barotropic energy equation could then be derived by multiplying (26) by the
depth-integrated horizontal transport hu+:

1

2
h∂tu+2 = −hu+∇p+ + p−u+ H1

h
∇b + LF+. (27)

Enforcing the mass conservation of the depth-integrated horizontal transport

∂tη1 = −∇ · (hu+), (28)

and the expression of p+ = p1 − h2
h

p− in (27) gives:

1

2
h∂tu+2 + 1

2
g∂tη

2
1 = −∇ · (hu+p+) + h2

h
p−∂tη1 + p−u+ H1

h
∇b + LF+. (29)

Similarly to (24), the equation of motion for the baroclinic mode is obtained by subtracting
the momentum equation of the upper layer from that of the bottom layer:

∂tu− + f k × u− = −∇p− + LF−. (30)
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Multiplying (30) by heu− gives the baroclinic energy equation:

1

2
he∂tu−2 = −hu−∇p− + LF−. (31)

Further manipulating the first term in the rhs of (31), first by exploiting the mass conservation
of the lower layer in which the bottom flow is replaced by its barotropic and baroclinic
counterparts

∂tη2 + ∇ · (h2u+) = ∇ · (heu−), (32)

and then by mean of (28) that gives ∇ · u+ = −∂tη1/h + u+∇b/h yields:

1

2
he∂tu−2 + 1

2
∂tη

2
2 = −∇ · (heu−p−) − h2

h
p−∂tη1 − p−u+ H1

h
∇b + LF−. (33)

Adding (29) and (33) gives the time-rate of change of the total energy of the model, whose
basin-integrated form vanishes identically in the inviscid limit.
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