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[1] This article examines the frequency-dependence of the
shape of the first empirical orthogonal function (EOF) of
sea level pressure (SLP) over the North Atlantic region for
time-scales in the range 8 months–45 years. It evidences
that the time-sacle chosen for conducting the EOF analyses
had no incidence on the main features of the first EOF of
North Atlantic SLP. INDEX TERMS: 0399 Atmospheric
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Geophysics: General or miscellaneous; 3399 Meteorology and
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1. Introduction

[2] This study is mainly about the question: Is the shape
of the dominant mode of variability in North Atlantic SLP
dependent on the time–scale chosen to make the analysis?
The first Empirical Orthogonal Function (EOF) and the first
Principal Component (PC) of the North Atlantic surface
pressure field are usually considered as representing,
respectively, the space and time structure of the dominant
mode of variability over the North Atlantic, i.e., the North
Atlantic Oscillation (NAO) (e.g., Hoerling et al. [2001]).
This interpretation ensues from the following observations:
i) a good correlation of the NAO index time series with the
first PC of the surface pressure field (e.g., Hurrel [1995]
found a correlation coefficient of 0.91 between them for
decadal time-scales), ii) the similarity between the first EOF
and the spatial pattern issued from averaging the surface
pressure fields that display a positive NAO index (e.g.,
Figure 2 of Greatbatch, [2000]), iii) the likeness between
the first EOF and the teleconnections pattern for the North
Atlantic surface pressure fields (e.g. Wallace and Gutzler
[1981]). In virtue of the relationship between the first EOF
of North Atlantic SLP and NAO, the study reported here
suggests the dominance of the NAO pattern upon the
variability at every time-scale from 8 months to 45 years.

2. Data

[3] We used the monthly mean-sea-level pressure data
(MSLP) on a 5� latitude by 10� longitude grid–point basis
from the Climatic Research Unit website. The sources of the
original data are given in Jones [1987]. The data we
analyzed had been recorded from 1 January 1873 to 31
December 2000. We extracted from this global MSLP

database a set of data relative to a region located within
[20�N, 65�N] in latitude and [100�W, 10�E] in longitude.
This area of about 120 grid points rougly coincides with the
North Atlantic region. Inside it, 20 grid–points time–series
have missing values. The number of missing data by grid
point remains less than 1.5% of the total length of the time
series, that is, about 23 gaps in 128*12 = 1536 months.
Each gap is filled with the climatological value of the MSLP
for the corresponding month. However, for the calculations
described in this paper, the seasonal cycle was removed by
subtracting out the calendar monthly means.
[4] The data were not detrended. We found no significant

effect of the trend in the MSLP data (not shown) on leading
EOFs.

3. Methodology

[5] Let X( p, t) denote the MSLP anomaly at the time t
and grid point p. The whole data set can be represented
either by a matrix X, or by time series Xp(t) or by 2D-fields
Xt( p), ( p = 1, 2, . . ., P = 90; t = 1,2, . . ., N = 1536). Here, N
and P denote the total number of months and grid points of
the MSLP data set, respectively. We assume that the MSLP
data set is a sample of a stationary normally-distributed
random variable, X, and that the mean m( p) and variance
s2( p) of the random time series Xp(t) can both be estimated
from the sample. Hereafter we use the standardized variable
Z( p, t) � (X( p, t) � m( p))/s( p).
[6] Firstly, Z( p, t) is filtered using 15 passband filters and

then decomposed into EOFs by a PC analysis. Our aim is to
show not only that the first EOF of the MSLP filtered data,
denoted by EW, is still independent of the filtering frequency
band, W, but also that it remains alike the first EOF, Eref, of
the unfiltered data set. The spatial correlation between Eref

and EW gives the similarity between them.
[7] A relevant issue is about the accidental finding of

results. This question can partially be approached through
statistical testing to establish the significance of the results.
However, the correct use of statistical tests requires addi-
tional independent data, that is new independent realizations
of the climatic system. The use of the same data to derive
the result and conduct the test leads to the ‘‘Mexican Hat’’
problem described in von Storch and Zwiers [2000, pp.
106]. On the same page Storch and Zwiers suggest two
alternatives to cope with this lack of data. The first one is to
divide the observations into learning and validation data
sets, assuming that the learning and validation periods
behave independently. This, however, reduces the frequency
range available for the analysis. Another alternative is to use
a carefully constructed CGM to produce independent simu-
lations of the phenomena to be analysed. This quite hard
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procedure can be replaced by a statistical model approach,
which gives independent data sets. Such a procedure was
illustrated by Smith [1992] to distinguish red noise from
non–linear determinism. He pointed out the availability of
numerous statistical models to construct surrogate data series.
Here our results are tested against both white and red noises.

4. PC Analysis of the Filtered Data

[8] The 15 filters used in this study are Butterworth ones,
mainly because they give a maximally flat response in both
the passband and stopband. The design of a Butterworth filter
requires to specify the passband riple, Rp, the stopband
attenuation, Rs, and the transition width (Wsi � Wpi), (i =
1, 2). For all filters we set N and Rp to 3 and to 3dB,
respectively. As Rp and N are fixed, each Butterworth filter is
only determined by the passband edge frequencies,Wpi. The
passband window length of each filter,W, varies as a function
of its passband edge frequencies asW = (Wp1 +Wp2)/3. This
leads to filters which have almost the same shape in the
frequency domain (see Figure 1). Once the filters have been
defined we proceed by filtering the MSLP anomalies, then
further decomposed into EOFs through a PC analysis. Only
the first EOF of each data set is retained (Figure 2), and its
space correlation with the EOF of reference is calculated. The

correlation is always above 0.7 (see Figure 1), which suggests
that the main features of the first EOF of MSLP are not
affected by the analysis time-scale.

5. Testing Against Noise

[9] In order to allow both autocorrelation in the synthetic
time series and cross correlation between the individual time
series, we followed Parlange and Katz [2000] who used a
multivariate, first-order autoregressive [AR(1)] (space-time
red noise) process to produce randomly standardized func-
tions, Rp(t). That is, the surrogates generator is given by:

Rp tð Þ ¼ �Rp t � 1ð Þ þWp tð Þ ð1Þ

where � is a P � P matrix of lag-one time correlation
coefficients and Wp(t) is a time series drawn from a
multivariate normal distribution with zero mean and P � P
variance-covariance matrix �.
[10] The matrices� and � satisfy the equations�Mo =M1

and � = Mo � �MT
1, where Mo and M1 are the lag-zero and

lag-one cross-covariance matrices with elements mo( p, q) =
hZt ( p), Zt (q)it andm1( p, q) = hZt ( p), Zt�1(q)it, with p, q = 1,
2, . . ., P and h.,.it the correlation operator. This technique
reproduces not only the contemporaneous and lag-one cross-
correlations, but also the first-order autocorrelations among
the standardized random variables Zt ( p).
[11] Using equation 1 we test for the significance of the

time invariance of the Eref pattern following the approach of

Figure 1. Top pannel: Shapes of the pass band filters;
Bottom pannel: Absolute value of the space–correlation
between the NAO pattern and the first EOF of the filtered
data plotted against the middle period of the filter. Typical
value of the space–correlation between MSLP fields is 0.15
and the variance of this value is 0.05.

Figure 2. Patterns of the first EOF for the filtered data.
The middle period of the filter and the explained variance
are plotted at the top of the image.
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Allen and Robertson [1996], a Monte Carlo surrogate data
testing. According to the philosophy of surrogate data
testing, we generate a large number of surrogates
data segments R(t, p)s, (s = 1, 2, . . ., 1000 segments) with
the same dimension as that of the original MSLP data. For
each segment, the procedure of filtering and EOF decom-
position are carried out in exactly the same way as for the
original data. Thus, for each frequency band, we obtain
1000 values of the correlation coefficient between the firsts
EOFs of the unfiltered and filtered surrogate data. Then, for
each frequency band the distribution of correlation values is
computed and the 97.5th percentile is compared to the
correlations obtained by using the MSLP data over the
same frequency band. Wherever this correlation is larger
than the 97.5th percentile, we conclude that the time
invariance of the Eref is statistically more significant than
expected from the hypothesis of data being produced by a
red space-time noise. However, this never happened: the
correlation coefficients obtained using the MSLP data felt
always within the 25th and the 75th percentiles computed
from surrogates. The time invariance of the first EOF can
be reproduced by a red noise process with the same
covariance matrix and lag-one autocorrelation as in the
data.
[12] To further explore this result we conducted two

additional tests. In the first one we used a red-white model,
that is, a model producing data which are temporally alike
red noise and spatially alike white noise (no cross-correla-
tions between locations). This model can be obtained from
the red space-time noise model by suppressing the second
term on the r.h.s. of equation 1. This is equivalent to the
Markov process used by Allen and Smith [1996]: Rp(t) =
gpRp(t � 1) + apWp(t), t = 1, 2, . . ., N, where Wp(t) is drawn
from a Gaussian, unit-variance white noise, gp is given by
the lag-one auto-covariance, cp1, of the individual time
series Zp(t), and ap is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cp1
� �2q

.
[13] With this model the correlation coefficients obtained

using the MSLP data always exceeded the 97.5th percentile
value.
[14] The second test we used considers a white–red

model producing data which are at each time spatially
correlated with neighboring grid points, like in MSLP data,
but on the other hand, they show no correlation either with
the previous or the next observation time.
[15] The correlation coefficients obtained with this model

felt always within the 25th and the 75th percentiles.
[16] These tests highlight that the key–factor is the

correlation between locations for it contributes to the
temporal invariance of the first EOF of North Atlantic
MSLP. The role of temporal dependence is secondary.

6. Discussion

[17] The frequency–independence of EOFs shapes was
first suggested by North [1984]. Even though his paper was
mainly about the relationship between the modes of physi-
cal systems and their EOFs, in the last paragraph of section
3 author evidenced the existence of a large class of systems
where EOFs are independent of the time–scale. In addition,
he pointed out the benefits, in model identification studies,
of finding ‘‘whether empirically derived EOFs taken from
real data depend upon frequency or not’’.

[18] The frequency–independence of EOFs shapes can
be also useful in EOF–based techniques for reconstruction
of past geophysical fields. For instance, some of the
statistical methods applied to reconstructing past variability
of SST [e.g. Smith et al, 1996; Kaplan et al., 1998] lie on
the assumption that EOF shapes remain invariante during
the whole reconstruction.
[19] The MSLP pattern shown in Figure 2, though similar

in gross features has distinct differences, e.g. the low center
around Iceland/Greenland seems to shift eastward with
increasing filter window and the high center in the subtro-
pics seems to shift westward. Differences among the patterns
should be expected, however systematic shifts may suggest
some hidden correlation. North et al. [1982] showed that the
error in the estimation of a given EOFs results from
contamination by the patterns of the neighboring EOFs.
Moreover, the amplitude of the error is correlated with the
number of independent samples used in computations. At
low frequencies, the number of independent samples in the
data set is reduced, and this decrease likely explains the
observed shift. Another possibility is an ocean–atmosphere
interaction at low–frequencies suggested by the similarity
between EOF patterns for low–frequencies and the first EOF
of Sea Surface Temperature (see Figure 2). However, the
discussion of such a possibility requires additional inves-
tigations that are beyond the scope of this study.
[20] The NAO is mainly a winter time feature and one

might presume that the invariant patterns might be much
more robust in the winter time. We carried out the same
analyses on winter–time data but the patterns remained
similar to those of Figure 2 (not shown).
[21] Another point concerns the frequency range of our

analyses. We used monthly data as the highest frequency
input to our analyses; this choice failed the sampling of the
frequencies at which most of the NAO variance occurs,
namely from daily to weekly–time scales. However, as the
pattern of the first EOF of North Atlantic SLP is known to
coincide with the NAO pattern, we have focused on the
low–frequency patterns.
[22] We also showed that a space–time red–noise pro-

cess can reproduce the invariance of shape of the first EOF
to temporal filtering. The random process to be successful
must use correlations between locations computed from the
observations. The source of such spatial correlations cannot
be explained from a statistical point of view, they are related
to deterministic mechanisms (e.g. the location of the mean
subtropical and polar jets) and forcings (e.g. on an aqua–
planet it would not be clear where NAO should have its
center). This shows that NAO is not a random process, but
can be statistically simulated by one where the spatial
correlations are the observed ones.

7. Conclusions

[23] For time–scales ranging from 8 months to 45 years
we showed the time invariance of the main features of the
dominant pattern of variability in the North Atlantic sea
level pressures.
[24] We also evidenced that a space– time red-noise

process can produce this kind of time invariance. To be
successful, the random process must use spatial correlations
computed from the observations.
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