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ABSTRACT: As well as having an impact on the background state of the climate, global warming due to human activities
could affect its natural oscillations and internal variability. In this study, we use four initial-condition ensembles from the
CMIP6 framework to investigate the potential evolution of internal climate variability under different warming pathways
for the twenty-first century. Our results suggest significant changes in natural climate variability and point to two distinct
regimes driving these changes. The first is a decrease in internal variability of surface air temperature at high latitudes and
all frequencies, associated with a poleward shift and the gradual disappearance of sea ice edges, which we show to be an im-
portant component of internal variability. The second is an intensification of the interannual variability of surface air tem-
perature and precipitation at low latitudes, which appears to be associated with El Niño–Southern Oscillation (ENSO).
This second regime is particularly alarming because it may contribute to making the climate more unstable and less
predictable, with a significant impact on human societies and ecosystems.
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1. Introduction

Earth’s climate is a complex system that varies on a broad
spectrum of time and space scales (Baede et al. 2001). This
variability is often academically divided into two components.
The first component is the forced variability, caused by exter-
nal factors acting on the climate. Examples include volcanic
eruptions that emit large amounts of aerosols that reflect solar
radiation or anthropogenic CO2 emissions that intensify the
greenhouse effect. The second component is the internal vari-
ability related to Earth system itself and represents the spread
of the range of possible system states for a given forcing or
background state. A wide range of phenomena at very differ-
ent scales contribute to this variability, from large climate os-
cillations such as El Niño–Southern Oscillation (ENSO) to
atmospheric cyclones, eddies, or ocean waves. Despite its
“internal” label, the latter component has been observed to
evolve over time in response to changes in the climate back-
ground state and external forcings, as in the example of
ENSO and other specific climate modes under global warm-
ing (Maher et al. 2018; Cai et al. 2021; Callahan et al. 2021;
Coburn and Pryor 2023). These two components of Earth’s
variability are intertwined in the climate records, posing a
challenging problem for scientists seeking to accurately disen-
tangle the forced and internal contributions.

Since the late 1990s, the Coupled Model Intercomparison
Project (CMIP) has enabled significant development of fully
coupled global climate models (Bock et al. 2020) and facili-
tated their use to investigate the future of Earth’s climate

under various emission scenarios. More recently, the initial-
condition large ensembles, which gather multiple coupled
climate simulations from the same model but starting from
different initial conditions, have experienced a rapid spread
(Deser et al. 2012, 2020; Lehner et al. 2020; Maher et al.
2021). They allowed, among other things, to make impor-
tant progress in estimating the intensity of internal variabil-
ity in a given climate model using ensemble variance as a
proxy. While this method has proved useful for extracting
the forced signal from simulations, as well as for quantifying
the importance of internal variability relative to other sour-
ces of uncertainty and its evolution over time (Lehner et al.
2020), less work has been done on the mechanisms linked to
these changes in internal variability, and much remains to
be learned about their evolution in the context of future
warming scenarios.

Given that internal variability is a dominant factor of uncer-
tainty in interannual-to-decadal projections (Hawkins and
Sutton 2009; Lehner et al. 2020), it is a key component for re-
alistic and reliable climate predictions. Assessing its evolution
under a range of forcing scenarios}particularly in the next
few decades}is a critical research objective as it has the po-
tential to impact the predictability of the climate or alterna-
tively temporarily mask or amplify long-term warming trends
(e.g., Sévellec and Drijfhout 2018). In the case of masking, it
could make potential arguments for minimizing the climate
problem and make the case for action against climate change
less compelling (as in the context of the global warming hia-
tus, e.g., Roberts et al. 2015). In the amplifying case, this could
worsen the short-term consequences of climate change on socie-
ties and ecosystems in particular by causing more intense
extreme events (such as more intense heatwaves, e.g., Perkins-
Kirkpatrick and Gibson 2017). In this context, a previous study
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investigated the evolution of interannual internal variability
of temperature using CMIP5 and CMIP6 ensembles over the
historical period and under the RCP8.5/SSP5-8.5 scenario
(Olonscheck et al. 2021). They detected a clear anthropogenic
change emerging at the end of the twenty-first century from
these high-emission scenarios and observed a latitudinal pattern
of changes in internal variability with increasing variability in
the tropics and decreasing at high latitudes. Other studies iden-
tified comparable latitudinal changes in variability without using
ensemble simulations (Rehfeld et al. 2020; Shi et al. 2023). They
estimated the climate variability by filtering or detrending the
total signal. This implies making assumptions to remove the
trend, corresponding to the forced signal, and makes the results
potentially sensitive to these choices.

Building on these results, in the present work, we investigate
the variability on interannual-to-decadal time scales, with pre-
cipitation in addition to surface temperature and using three dif-
ferent emission scenarios. We investigate how internal climate
variability has evolved during this first past period of significant
industrial human development (since 1850) and how it might
evolve in the future (up to 2100). To this end, rather than study-
ing the evolution of known modes of internal variability in our
climate, we choose an objective approach by studying the inter-
nal variability signal from a general point of view, without
pointing to specific climate modes. We use for this purpose a
collection of four initial-condition large ensembles from phase 6
of CMIP to estimate the evolution of internal variability of sur-
face air temperature and precipitation. We focus our analysis
on the temporal scales of this variability, extending previous
studies to decadal frequencies, and explore the spatial signature
of the changes detected. In particular, we describe the underly-
ing spatial patterns of these changes and study the physical
mechanisms driving them. In the first section, the methods and
datasets are described, whereas the results are presented in
section 3. Discussion and conclusions follow in section 4.

2. Materials and methods

a. Materials

SURFACE AIR TEMPERATURE, PRECIPITATION, SEA ICE

CONCENTRATION, AND SEA SURFACE TEMPERATURE DATA

The study is based on yearly averaged data from CMIP6
ensemble models. Two quantities were investigated: surface

air temperature (SAT) and precipitation (PRECIP). Sea ice
concentration (SIC) and sea surface temperature (SST) were
used to contextualize and better understand changes in the
SAT variance. The ensembles used have been chosen to sat-
isfy three conditions: (i) more than 20 members in the same
configuration (meaning the same physics and forcings),
(ii) available from 1850 to 2100, and (iii) available for the
three selected forcing scenarios. The scenarios investigated
are “Sustainability” (SSP1-2.6) with a low radiative forcing of
2.6 W m22, “Middle of the Road” (SSP2-4.5) with a radiative
forcing of 4.5 W m22, and “Fossil-fueled Development”
(SSP5-8.5) with a high radiative forcing of 8.5 W m22. The
radiative forcings mentioned above are the nominal val-
ues reached in 2100. Four models (Table 1) matched these
conditions: ACCESS-ESM1-5 (Ziehn et al. 2020, CSIRO),
CanESM5 (Swart et al. 2019, CCCma), MIROC6 (Tatebe et al.
2019, MIROC), and MPI-ESM1-2-LR (Olonscheck et al.
2023, MPI-M). They can be considered as quite independent
since they are based on distinct atmosphere and ocean models.
They also come from separate model families according to the
evaluation performed by Brunner et al. (2020). This indepen-
dence is important because it is the very motivation of our
multiensemble strategy, assuming, to some extent, that model
errors partially vanish if the models are independent. In prac-
tice, the models always share at least some assumptions and
are therefore never completely independent. However, we be-
lieve that we can consider results derived from a set of models
with more confidence than those derived from a single model,
particularly when we are interested, as here, in the dispersion
of each model around its own ensemble mean and not in the
differences between the different models.

For all models, we decided to use a single configuration for
physics and forcing per model to preserve the consistency
among members concerning the physical processes simulated
and their parameterization. We did not want to consider
multiple configurations of the same model because we do not
know exactly how much the configurations will differ from
each other, and if they are too close, it would artificially
increase the importance of the model in the multimodel aver-
age. For each model, we selected the most common configura-
tion, which is generally the first configuration (referred to as
p1 f1). The only exception is the CanESM5 model from
CCCma, where we used the second physical configuration be-
cause the first configuration showed “cold spots in Antarctica,

TABLE 1. CMIP6 models used in the study.

Model Institution Configuration
No. of

members Ocean/atmosphere (lon 3 lat)

Equilibrium
climate

sensitivity Reference

ACCESS-ESM1-5 CSIRO
(Australia)

p1 f1 40 ACCESS-OM2 (18 3 0.68)/
HadGAM2 (1.878 3 1.258)

3.9 Ziehn et al. (2020)

CanESM5 CCCma
(Canada)

p2 f1 25 NEMO 3.4.1 (18 3 0.68)/
CanAM5 (2.88 3 2.88)

5.6 Swart et al. (2019)

MIROC6 MIROC (Japan) p1 f1 50 COCO 4.9 (18 3 0.78)/CCSR
AGCM (1.48 3 1.48)

2.6 Tatebe et al. (2019)

MPI-ESM1-2-LR MPI-M
(Germany)

p1 f1 30 MPIOM 1.63 (1.48 3 0.88)/
ECHAM 6.3 (1.878 3 1.878)

2.8 Olonscheck et al.
(2023)
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which arise from a misspecified land fraction in p1 and were
resolved in p2” according to Swart et al. (2019, p. 4860).

b. Methods

In this section, the methods are presented using SAT in the
mathematical formulas but are also applied to PRECIP, SIC,
and SST data throughout the work.

1) ENSEMBLE VARIANCE AS A PROXY OF INTERNAL

VARIABILITY

The variance computation in the present work is based on
ensemble anomalies, which means that at each time step t, the
ensemble mean T̂(t) is subtracted from each member j of
the ensemble. Each model/ensemble is processed separately.
The ensemble anomaly of a member (T′

j ) corresponds to
T′
j (t) 5 Tj(t) 2 T̂(t) or equivalently T′ 5 T 2 T̂ : (1)

The use of ensemble variance and ensemble anomalies allows
us to focus on the evolution of internal variability without be-
ing impacted by model differences/bias in absolute tempera-
ture or precipitation (Chen et al. 2021, IPCC, AR6 Chapter 1
section 1.4.1).

The ensemble variance is also computed at each time step.
Two ensemble variances are computed: the ensemble vari-
ance on yearly data at each location [Eq. (2)] and on globally
averaged data [Eq. (3)]. Taking SAT anomalies as an exam-
ple, ensemble variances are computed for each model or en-
semble of sizeN as

EnVarSAT(t, x, y) 5
1

N 2 1
∑
N

j51
T′2
j (t, x, y) 5 T̂′2 , (2)

EnVarGSAT(t) 5
1

N 2 1
∑
N

j51
hT′

j i2(t) 5 ̂hT′i2 , (3)

where h.i is the spatial average, such as hT′
j i5 (1/S)� �

S
(Tj 2 T̂)ds,

where ds is the surface area differential and S is Earth’s sur-
face. In the calculation of ensemble variance, ?̂ corresponds to

[1/(N2 1)]∑N
to take into account the degrees of freedom.

The computation of the multiensemble variance is detailed
in the following section.

2) CONSTRUCTION OF THE MULTIENSEMBLE DATASET

We based our work on a multiensemble approach for two
reasons. First, as explained in the material section, the relative
independence of the models is expected to partially remove
model errors via averaging. Another way to think about it is
that combining the internal variability of the different models
makes it possible to study their common signal in terms of in-
ternal variability. Second, calculating the variance on a larger
ensemble constructed from members of different models
helps improve the estimation of internal variability by poten-
tially encountering more possible states.

The multiensemble dataset was defined according to the
“model democracy,” which means that each model has the
same weight in the dataset. The weighting of models is an

active research question, and no general methodology is yet
accepted (Knutti 2010). In addition, all the selected models
have a large number of members (between 25 and 50) allow-
ing us to assume a relatively good resolution of the internal
variability in the ensembles given their relatively coarse spa-
tial resolutions (around or greater than 18). According to a re-
cent paper, ensembles of 25 members could be sufficient to
determine changes in temperature internal variability with
about 10% error or less and with 30% when studying the in-
ternal response to forcing (Milinski et al. 2020). So here we
decided to assign the same weight to all models. In addition,
we also desired to use all the members available for the multi-
ensemble computation. We therefore used two methodologies
that return similar results but present different advantages:

• Averaging the individual results from the four models to
construct an ensemble acknowledging all members from
the four models (145 members). This is done by applying a
weight on each individual member that corresponds to the
inverse of the size of the ensemble it comes from (for ex-
ample, MIROC6 has 50 members, and each member from
MIROC6 receives a weight equal to 1/50).

• Use a resampling methodology where we select randomly
20 members for each model and compute the ensemble var-
iance on the 80 (i.e., 20 3 4) members. Here, since we use
ensemble anomalies (as explained in the section below), it
is possible to compute the variance from a set of members
coming from different models without being impacted by
intermodel variance linked to their absolute climate state
or their forced response. Repeating this many times (e.g.,
100 times) allows us to assess the uncertainty.

While the first method has the advantage of being computa-
tionally efficient, the second one provides robust confidence
intervals for the results. We therefore used the first method
for the EOF decomposition discussed below and the other
one for all the tasks that were less computationally expensive.

To compute the multiensemble variance maps, we first re-
gridded the model outputs on a 18 3 18 grid with conservative
algorithms (Jones 1999) using the xESMF python package
(Zhuang et al. 2023).

3) SEPARATION OF TIME SCALES

The time scales have been separated using a rolling average
on the ensemble anomalies time series. For a t-yr filtering,
one obtains

T′ t(t) 5 1
t

� t1t/2

t2t/2
T′(t′)dt′, (4)

where t is the time period of the filter, T′ t is the filtered data,
and dt′ is the time unit. The t-yr ensemble variance is thus
computed by applying the EnVar, [Eq. (2)] or [Eq. (3)], on
the t-yr filtered temperature anomalies T′ t. The t-yr ensemble
variance contains also the lower frequencies. We therefore de-
fine frequency bands (1–3, 3–5, 5–11, and .11 years) com-
puted as the difference between two filterings. For instance,
the 1–3 years is the difference between the 1-yr and the 3-yr
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ensemble variance time series. Each t-yr ensemble variance
time series is finally filtered to have a final 11-yr resolution.
Here, one must clearly distinguish the filtering on temperature
anomalies before computing the variance that isolates a part of
the variance “energy” and the filtering on variance time series
that simply smooths the variance curves and homogenizes the
resolution of variance time series to allow comparison between
frequency bands.

4) DECOMPOSITION IN SPATIAL MODES

The spatial patterns that control the (co)variance also
known as empirical orthogonal functions (EOFs) and their
temporal evolution called principal components (PCs) have
been computed using a singular value decomposition (SVD).
The entire ensemble anomaly dataset is constructed by concatenat-
ing all years, models, members, scenarios, and locations.
Then, it has been area weighted (square root of the cosine of
latitudes, to preserve variance), ensemble-size weighted
(weight 5 inverse of ensemble size), and decomposed to ob-
tain the first 1000 modes. Hence, here, the EOFs represent
“typical” EOFs independent of time, ensemble members,
and models. (Note that it is possible to define EOFs that are
dependent on either time, ensemble members, or models, but
this defeats the purpose of our computation that wishes to de-
fine a common basis.)

In the matrix form, the ensemble anomalies of SAT can be
decomposed using the SVD into three matrices (U, S, and VT,
where superscript T represents the transpose operator) and
reorganized into a sum of modes i with PCs (mode, time, and
member) and EOFs (mode, lon, and lat):

T′ 5 USVT 5∑
i
PCiEOFi: (5)

Globally averaged temperature anomalies can be obtained
by spatially averaging the EOFs, enabling the contribution
of each mode to the global internal variability signal to be
studied:

hT′i 5∑
i
PCihEOFii: (6)

In this case, we are mainly interested in the signal associated
with the first mode, which is significantly dominant (as ex-
plained below). The contribution of this first mode (i 5 1) to
the globally averaged anomalies is computed as

hT′i1 5 PC1hEOF1i: (7)

And the ensemble variance of globally averaged surface air
temperature explained by the first mode (only) is obtained by
computing the squared anomalies and averaging over mem-
bers ( ?̂ ):

̂hT′i21 5 P̂C2
1 hEOF1i2 (8)

Here, we have designed PC as a 2D matrix with a first dimension
involving modes and a second dimension involving time and
members. When we average over the members, we therefore

only average over part of the second dimension, creating cross
terms between modes, which are not investigated.

The decomposition is presented above for SAT data but
can be applied to any ensemble model output. In this study,
the same methodology is used to decompose the precipitation
flux dataset in PCs and EOFs.

3. Results

We start the investigation with a broad scope using globally
averaged data and progressively refine the analysis to move to
local scope and finally to specific patterns.

a. Opposite evolution of interannual and decadal
variability at a global scale

The ensemble variances computed for globally averaged
temperature (Fig. 1) and precipitation (Fig. 2) strongly differ
among models. For example, MIROC6, the ensemble with
the highest resolution, has more than twice the variance of
other models. However, these differences do not prevent the
models to show similar a trend or behavior regarding the time
evolution of this ensemble variance.

Looking specifically at the total variance, we see an in-
crease over time for precipitation which seems also correlated
to the intensity of the radiative forcing whereas no such trends
are observed for temperature. For precipitation, the total en-
semble variance reaches its maximum for all models in the
2065–95 segment under the SSP5-8.5 forcing scenario. For
temperature, the discrepancies between models do not allow
to identify the future evolution of the total ensemble variance.
One model (CanESM5) shows an overall decrease over time
and scenario, two models (MPI-ESM1-2-LR and ACCESS-
ESM1-5) mainly exhibit stagnation, and the last one (MIROC6)
shows an increase.

Despite this difference regarding the evolution of the total
variance of precipitation and temperature, the two quantities
share a strong common signal concerning the spectral change
obtained with the filtering approach [see section 2b(3)]. In-
deed, both show an intensification of interannual variability
with a period between 1 and 3 years, in both absolute and rel-
ative contributions. At the same time, a weakening of the
decadal variability of temperature with a period larger than
11 years is observed. This explains why despite the increase in
interannual variability, temperature does not present a net in-
crease in the total variance as observed in precipitation. The
robust intermodel agreement of this shift allows us to analyze
the multiensemble variance to describe and summarize this
phenomenon.

Regarding the precipitation, the initial variances of each
frequency band at the early historical period (1870–1900) are
6.1 mm2 yr22 (52% of the total variance) for the 1–3-yr period
band (i.e., interannual), 1.8 mm2 yr22 (16%) for 3–5 years,
1.5 mm2 yr22 (13%) for 5–11 years, and 2.3 mm2 yr22 (20%)
for periods longer than 11 years (i.e., decadal). The absolute
(relative) contribution of the interannual variability increases
to 8.4 mm2 yr22 (55%) for the 1980–2010 time segment and, for
the end of the twenty-first century, increases, respectively, to
8.8 mm2 yr22 (58%), 9.8 mm2 yr22(62%), and 12.3 mm2 yr22
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FIG. 1. Ensemble variance of globally averaged SAT. The four first rows show the ensemble variance for four different models:
MPI-ESM1-2-LR, MIROC6, ACCESS-ESM1-5, and CanESM5. The last row presents the variance computed from a multiensemble con-
structed from the concatenation of the four previous models. (left) The yearly results for the historical and projected period with the
Fossil-fueled Development scenario (SSP5-8.5). The colors represent the contribution of the various frequency bands to the total variance:
blue for the variability with a period band of 1–3 years, orange for 3–5 years, red for 5–11 years, and gray for periods longer than 11 years.
The bands are obtained from a temporal filtering of temperature at the given period, and all the bands of variance are finally filtered to be
consistent with the 11-yr period. (right) The results for a given climatic period (averaged over 30 years): early historical (1870–1900), end
of historical (1980–2010), and end of projections (2065–95) for three shared socioeconomic pathways: Sustainability (SSP1-2.6), Middle of
the Road (SSP2-4.5), and Fossil-fueled Development (SSP5-8.5). The black lines represent the quarters of the total variance.
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(65%) for SSP1-2.6, SSP2-4.5, and SSP5-8.5. The absolute vari-
ance of the other bands does not change much over time or
scenario, except the 3–5-yr period band that increases from
1870–1900 to 1980–2010 and then stabilizes.

Concerning the SAT, the initial variances are 5.33 1023 K2

(40% of the total variance) for the interannual component,
2.4 3 1023 K2 (18%) for a period band of 3–5 years,
2.13 1023 K2 (15%) for 5–11 years, and 3.6 3 1023 K2 (27%)

FIG. 2. Ensemble variance of globally averaged precipitation. As in Fig. 1, but for precipitation.
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for decadal variability. The absolute (relative) contribution of
the interannual variability increases to 7.7 3 1023 K2 (45%)
for the 1980–2010 time segment. For the end of the current
century, it increases to 8.3 3 1023 K2 (50%), 8.9 3 1023 K2

(55%), and 9.6 3 1023 K2 (59%) for SSP1-2.6, SSP2-4.5,
and SSP5-8.5, respectively. After an increase of their variance
from 1870–1900 to 1980–2010, frequency bands above 1–3 years
show significant declines. The maximum decrease is observed
for the decadal variability that diminishes to 2.2 3 1023 K2 for
SSP5-8.5 in 2065–95, which represents a 40% loss relative to the
early historical period.

These frequency changes in temperature and precipitation
variance are very intense. Indeed, the ensemble variance from
the 1–3-yr band almost doubles from 1870–1900 to 2065–95
for the SSP5-8.5 scenario, when at the same time, temperature
variance in the other bands decreases significantly, up to 40%.
The interannual time scale dominates the internal variability
of temperature and precipitation, in both the past and the pre-
sent, and even more so in the future. In contrast, the contribu-
tion of low frequencies to the total variability of these two
quantities at a global scale appears to be of second-order im-
portance and is projected to decrease even further over the
twenty-first century.

To better understand this phenomenon, we refined the
analysis on the five identified 30-yr segments (1870–1900,
1980–2010, and 2065–95 for the three scenarios) with spatial
maps of local ensemble variance (Figs. 3 and 4). The objective
is to determine, among other things, if the signal is spatially
homogeneous or located in specific regions. We also seek to
determine whether the opposite changes in temperature vari-
ance are driven by the same mechanism or not. For that, we
use the multiensemble dataset built from the 100-times resam-
pling method [see section 2b(2)] to investigate a robust signal.
The area where the signal-to-noise ratio of the change in en-
semble variance is less than one (i.e., where the 95% confidence
interval associated with the change in variance is greater than
the mean magnitude of that change) indicates low significance
and covers most of the area where the changes are weak.

The maps of temperature variance present, first of all, a
strong initial (1870–1900) ensemble variance located over the
ocean at high latitudes (Fig. 3, first column). This signal shows
significant intensity at all frequencies and reaches its peak for
the interannual variability, in the 1–3-yr band. On the other
hand, an important ensemble variance signal is observed at
lower latitudes on land and in the equatorial central Pacific,
for the interannual variability. The changes computed for the
four following segments (Fig. 3, second to fifth column) ap-
pear as a progressive evolution of two regimes. The first one
is associated with a decrease in the ensemble variance located
in the ocean at high latitudes and for all time scales, in agree-
ment with the initial variance signal. The second one is associ-
ated with an increase solely visible at a band frequency of
1–3 years and located at lower latitudes. Only this second re-
gime appears in the precipitation maps (Fig. 4). Its signature
is particularly visible around the equatorial band of the
Pacific. According to the assessment of significance, rep-
resented by the gray hatches, these two patterns of change
clearly stand out as being robust at the 95% confidence

level. In the next two subsections, we will discuss these
two changes more specifically.

b. Decline of internal variability at high latitudes

The decrease in temperature variance located at high lati-
tudes and acting on all time scales has an amplitude varying
with the intensity of the scenarios (Fig. 3). In the two less
emissive scenarios (SSP1-2.6 and SSP2-4.5), this decrease seems
also linked, in the Northern Hemisphere, to a local increase of the
variance further poleward of the decrease patch. Given the loca-
tion of the decrease and the associated increase poleward, we
have tested if this decrease is associated with sea ice–atmosphere
interactions.

To investigate this hypothesis of sea ice impact on SAT var-
iance, we computed, following the same methodologies, the
multiensemble variance of the yearly SIC and its evolution
(Fig. 5). The SAT variance changes precisely match the SIC
variance changes. In the Northern Hemisphere, we observe a
decrease in the ensemble variances in the Barents Sea in
1980–2010 that intensifies and extends progressively in the
future scenarios to the Greenland Sea and to the Irminger
and Labrador Seas for the higher scenarios. In the Southern
Hemisphere, the decrease is a bit smaller but still exists. It is
mainly located at both sides of the Antarctic Peninsula and
propagates and intensifies all around Antarctica proportion-
ally to the radiative forcing. At the same time, we observe an
increase in the ensemble variance of temperature at higher lat-
itudes that corresponds to an increase in SIC variance change
in the Northern Hemisphere but that cannot be matched to
SIC variance changes in the south because of the presence of
the land.

We explain this almost perfect match between the variance
signals with the impact of sea ice on surface air temperature
as explained by the schematic diagram in Fig. 6. In the presence
of sea ice (“ice-covered” area), the atmosphere is isolated from
the warmer ocean and its temperature can decrease to very low
levels. Conversely, in the absence of sea ice (“ice-free” area),
the ocean warms the atmosphere and prevents its temperature
from decreasing to very low levels. The area of variance
changes is therefore simply linked with the presence/absence
of sea ice among members. The region where some members
present sea ice and some others do not (referred to as “sea ice
edge”) will have very high SAT ensemble variance. In con-
trast, the regions that are covered by sea ice either in all mem-
bers or in none of them have much lower SAT ensemble
variance. The signature showing a decrease in variance is
therefore the footprint of the intermember sea ice edge during
the early historical period changing from being ice-covered in
some members and ice-free in others to being ice-free in all or
most of the members. Following the same line of reasoning,
the signature showing an increase in variance is the footprint
of the intermember sea ice edge in a given scenario changing
from being ice-covered in all or most of the members to being
ice-covered in some members and ice-free in others. The com-
bined increasing and decreasing patches indicate the displace-
ment of the sea ice edge. The fact that SSP5-8.5 presents
almost no increase in ensemble variance reflects the almost
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disappearance of sea ice in yearly averaged sea ice concentra-
tion, linked to global warming. Indeed, in SSP5-8.5, the multi-
ensemble mean sea ice concentration does not have any cell in
the Northern Hemisphere with more than 50% of sea ice after
2090 and no cell with more than 75% of sea ice after 2062. The
system described here therefore involves three components
with mutual impact on their variances: the ocean, the atmo-
sphere, and the sea ice. In this relationship, sea ice is the main
driver of variance, enabling or preventing heat exchange be-
tween the ocean and the atmosphere.

To test the validity of the proposed system, we extended
the investigations to sea surface temperature. In Fig. 7, the
evolution of the ensemble variance of SST with respect to the
early historical period is compared to the ensemble variance of
sea ice. As for the SAT case, the SST variance changes match
the changes in the sea ice variance. This results from the fact
that under sea ice, SST is locked near the freezing point, so
when sea ice concentration changes, temperature changes.
Their variances are directly related. Although obvious, this re-
sult reinforces our confidence in this three-component (ocean,
sea ice, and atmosphere) system.

c. Reinforcement of interannual variability at
low latitudes

As discussed above, the second regime observed on local
ensemble variance maps is characterized by an increase in

variance at low latitudes (Figs. 3 and 4). For temperature, the
changes are located both above the ocean, in the eastern and
central equatorial Pacific region, and above the land, over the
Amazon rain forest or in the tropical regions in Africa, Asia,
and Australia. The evolution appears proportional to the radi-
ative forcing with a maximum reached for SSP5-8.5 at
the end of the twenty-first century. For this time segment, the
maximum change is located in the Amazonian region where
the initial (1870–1900) variance is 0.34 K2 and increases to
1.59 K2. In terms of standard deviation, it corresponds to an
increase by 0.67 K of the interannual variability, which is
more than a doubling.

Local ensemble variances for precipitation are consistent with
the results from globally averaged data and on the local variance
of temperature (Fig. 4). Indeed, we find the low-latitude signa-
ture associated with the increasing variance at the interannual
scale. The increase seems again proportional to the radiative
forcing and closely looks like a typical ENSO signature. For the
end of the twenty-first century time segment, the maximum
change is located in the western Pacific where the initial variance
was 4 3 105 mm2 yr22 and increased to 13 3 105 mm2 yr22.
In terms of standard deviation, it corresponds to an increase by
520 mm yr21 of the interannual variability (i.e., close to a dou-
bling). The absence of signal at lower frequency is also an argu-
ment to associate this precipitation variance signal to the signal
of SAT variance and consider they are driven by the same
mechanism.

FIG. 5. Comparison between SIC and SAT ensemble variance changes. The colors represent the changes in SIC ensemble variance (%)
compared to the early historical reference (1870–1900). Areas in red represent local increases of ensemble variance, and the blue areas
represent local decreases. Contours represent the changes in SAT ensemble variance (K2) compared to the early historical reference. The
thick lines represent the zero contour, and the thin solid and dashed lines represent, respectively, the positive (increase) and negative
(decrease) contours. (first column) The results for the end of the historical period (1980–2010). The three following columns present the
results for the end of the twenty-first century for the three scenarios studied: (second column) SSP1-2.6, (third column) SSP2-4.5, and
(fourth column) SSP5-8.5. (top) The results around the North Pole. The contours are plotted from 22 to 2 K2 every 0.4 K2. (bottom) The
variances are smaller around the South Pole; therefore, the colormap and contour values are reduced by half.
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To determine whether this pattern of increasing variance is
driven by a specific mechanism or is the result of the super-
position of different mechanisms, we decomposed the SAT
and precipitation into a collection of EOFs (referred to as
spatial modes) and their associated PCs (referred to as time
series of the modes), using a singular value decomposition
[see section 2b(4)]. This is done by using the entire dataset
(i.e., all time periods, scenarios, models, and ensembles). It
allows to build a typical variability pattern valid across and
representative of all models, scenarios, and time periods.

For both SAT and precipitation, the leading modes ob-
tained (Fig. 8) are largely dominant and explain a significant
part of the variance. The first mode (EOF1) of SAT alone ex-
plains 15% of the variance of the entire dataset, while the fol-
lowing mode explains only 6%. Regarding the precipitation,
EOF1 explains 24% of the total variance, whereas EOF2 is
representative of only 5%. These EOFs are particularly inten-
sified at low latitudes. Within the 208S–208N region, the first
mode of SAT and of precipitation explains 46% and 28% of
the variance, respectively. Focusing on the Pacific sector only
(208S–208N and 1308–2908E), they are even more important.
Indeed, there, EOF1 of SAT and of precipitation explains
55% and 35% of the variance, respectively.

These leading EOFs for temperature and precipitation with
their strong signature in the equatorial Pacific and teleconnec-
tions transporting their influence around the world mainly in the
tropical region are very close to the typical ENSO pattern that

dominates the variability of climate at a global scale (Cassou
et al. 2021).

To determine whether these ENSO-like patterns are responsi-
ble for the increase in ensemble variance frequency, we com-
puted the ensemble variance of globally averaged data explained
by the first mode alone (Figs. 9 and 10 for SAT and precipitation,
respectively). We used for each quantity its PC1 and its globally
averaged EOF1. In this work, we do not investigate the impact
of cross terms involving the first mode and the other ones.

For both SAT and precipitation, the variability is domi-
nated mainly by the 1–3-yr band and by the 3–5-yr band to a
lesser extent. This is typical of ENSO, generally assumed to
have a period between 2 and 7 years (Fredriksen et al. 2020).
For SAT (Fig. 9), the relative importance of the 1–3-yr band
is very close between models, starting around 50% at the begin-
ning of the historical period and reaching 65%–75% at the end
of the SSP5-8.5 scenario. Regarding precipitation (Fig. 10), the
differences are much larger among models. MPI shows a weak
increase in interannual variability, starting around 60% and fin-
ishing at 63%. MIROC6 presents the largest increase from 64%
to 77%. Interannual variability also increases in ACCESS but is
limited by its already high level at the start of the simulation.
The relative importance of its 1–3-yr band increases from 73%
to 80%. Finally, CanESM5 presents also a significant increase
from 68% to 76%. The differences regarding the increase of in-
terannual variability seem linked to the concomitant increase of
the 3–5-year frequency band that can dilute a part of the 1–3-yr
band increase in relative importance. In general, the total en-
semble variance increases with time and radiative forcing, in
line with recent literature based on SST (Cai et al. 2022; Maher
et al. 2023) and as indicated in the IPCC AR6 report (Lee et al.
2021, Chapter 4, section 4.3.3.2) for precipitation. According
to our results, this is achieved through the absolute and relative
increase of the interannual variability (i.e., 1–3-yr period
band). For the precipitation and using the multiensemble, the
absolute (relative) ensemble variance at the interannual scale
is 0.27 mm2 yr22 (65%) during the early historical (1870–1900),
increases to 0.37 mm2 yr22 (66%) between 1980 and 2100, and
reaches at the end of the century 0.47 (69%), 0.52 (72%), and
0.59 mm2 yr22 (74%) for SSP1-2.6, SSP2-4.5, and SSP5-8.5, re-
spectively. For the SAT, the interannual multiensemble vari-
ance is 2.5 3 1023 K2 (53%) during the early historical,
increases to 3.7 3 1023 K2 (56%) between 1980 and 2100, and
reaches at the end of the century 4.1 (60%), 4.5 (63%), and
4.6 3 1023 K2 (67%) for SSP1-2.6, SSP2-4.5, and SSP5-8.5, re-
spectively. The interannual variance component almost doubles
between the early historical and the end of the twenty-first cen-
tury for SSP5-8.5.

MIROC6 presents a small decrease of ensemble variance at
the end of the SSP5-8.5 scenario for both SAT and precipita-
tion. This is due to a change in the low-latitude variability
pattern, moving from canonical-type/eastern ENSO to Modoki-
type/central ENSO (Shin et al. 2022). In our framework,
this implies a transfer of the variability to another EOF.
CanESM5 also presents such a decrease, but its spatial reso-
lution is much lower and we were not able to recognize a
clear Modoki pattern emerging. However, we clearly iden-
tify alternative patterns emerging in the equatorial Pacific

FIG. 6. Schematic link between ensemble variance of sea ice and
ensemble variance of surface air and ocean temperature. The inter-
member sea ice edge is the area where some members are covered
by sea ice and others are not. Sea ice controls and enables heat ex-
change between the ocean and the atmosphere. Consequently, in
these transition zones, variance will be important not only for SIC
but also for atmospheric and ocean surface temperature.
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and therefore expect leakage of the variance of its first
mode to these other EOFs.

4. Discussion

Using four ensemble models from CMIP6, we studied
the evolution of ensemble variance as an indicator of inter-
nal variability. Our results suggest that this internal

variability has changed since the beginning of the historical
period and is likely to change in the future depending on
the emission scenario. We paid particular attention to sep-
arating the different temporal scales of variability, by
highlighting and associating frequencies with the simulated
changes. This aspect has not been much studied in the litera-
ture, particularly using different realistic forcing scenarios. For
instance, Rehfeld et al. (2020) studied variability frequencies,

FIG. 7. Comparison between SIC and SST ensemble variance changes. As in Fig. 5, the colors represent the changes in SIC ensemble
variance (%) compared to the early historical reference (1870–1900). Contours represent the changes in SST ensemble variance (K2) com-
pared to the early historical reference. The thick lines represent the zero contour, and the thin solid and dashed lines represent, respec-
tively, the positive (increase) and negative (decrease) contours. (top) The results around the North Pole, and the contours are plotted
from 21 to 1 K2 every 0.2 K2. (bottom) The variances are smaller around the South Pole; therefore, the colormap and contour values are
reduced by half.

FIG. 8. First EOFs from a SVD of SAT and precipitation. The first EOF modes for (left) SAT and (right) precipita-
tion multiplied by the standard deviation of the first principal component. The first mode of SAT explains 15% of the
variance of the entire dataset, and the second mode explains only 6%. For precipitation, the first mode explains 24%
of the variance and the second mode explains only 5%.
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FIG. 9. Ensemble variance of globally averaged SAT explained by the first EOF mode. Each row corresponds to a given model,
except the last one which is the concatenation of all of them. The rows present the ensemble variance over the historical and projection
(SSP5-8.5) periods. As in Fig. 1, the colors represent the contribution of the various frequency bands of variability to the variance, and the
right panels gather information for three climatic periods (1870–1900, 1980–2010, and 2065–95) and for the three investigated scenarios for
the last period (2065–95). The black lines represent the quarters of the total variance.
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but only using idealized experiments (e.g., 1pctCO2 or abrupt-
4xCO2). Our results highlighted two distinct patterns of changes
consistent with previous works, using ensemble simula-
tions (Olonscheck et al. 2021), or single-member datasets

(Rehfeld et al. 2020; Shi et al. 2023). However, the two mecha-
nisms driving the changes identified in the present study are to
some extent different from those proposed in these previous
studies.

FIG. 10. Ensemble variance of globally averaged precipitation flux explained by the first EOF mode. As in Fig. 9, but for precipitation.
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The first one, inducing a net loss of internal variability at
high latitudes, is linked to the progressive disappearance of
sea ice, as also suggested by Olonscheck et al. (2021) or Shi
et al. (2023). Here, we show that the changes are shared from
interannual-to-decadal time scales and show that the domi-
nant signal is related to the sea ice edge shifting poleward. In
addition, we highlight the importance of the coupled ocean–
atmosphere–sea ice system reinforced by the similar changes
observed in sea surface temperature variance. Olonscheck
et al. (2021) have proposed that the meridional temperature
gradient may also play an important role in reducing tempera-
ture variability from high to midlatitudes. Although this
mechanism may indeed play a role in the decrease in variance,
we believe that this role is second order, since the decrease at
midlatitudes is not visible compared to the one at high lati-
tudes. Shi et al. (2023) suggest that snow-cover changes on
land contribute to the decrease in temperature variability at
high latitudes. This is a potential mechanism explaining the
small decrease in variability we observe at high latitudes over
land. However, we find that the signal is mainly oceanic, and
therefore, the sea ice edge displacement is likely the dominant
mechanism to explain the decreasing signal detected at a
global scale.

The second mechanism acts at low latitudes where we sug-
gest an increase in the internal variability frequency in the
future. Although Olonscheck et al. (2021) also observed an in-
crease in variability at low latitudes, they linked these obser-
vations to changes in vegetation cover, with a transition to
drier surface types. In particular, they suggest a shift from
tropical forest to semiarid landscapes. Another study based
on single-member datasets suggests that changes at low lati-
tudes are linked to a decrease in soil moisture and an increase
in clouds and longwave radiations associated (Shi et al. 2023).
In the present work, thanks to the study of precipitation in
addition to temperature, an ENSO-like pattern emerges natu-
rally from the singular value decomposition of the data.
Moreover, the separation of frequencies enables us to investi-
gate this aspect of changes concerning the entire low-latitude
pattern. We suggest that the increasing frequency of internal
variability observed at low latitudes may reflect an increase in
the frequency of ENSO, with an interannual component be-
coming increasingly dominant reflecting stronger associated
events. These observations can be linked to the work of
Fredriksen et al. (2020) describing a shift of the Niño-3.4
index toward the higher frequency in its power spectrum.
Here, we obtain the same results using a completely different
and independent method making a supplementary argument
in the direction of this hypothesis. In addition, we bring addi-
tional evidence to answer the question opened by Fredriksen
et al. (2020) about the proportionality of the frequency in-
creasing with the radiative forcing. Our results with EOF de-
composition suggest that the increase in frequency is greater
if the radiative forcing is stronger. Our description of the
increasing frequency of ENSO is reinforced by the robust
agreement among models regarding this evolution despite
their large differences in other aspects. Indeed, they all used
different resolutions and model components. They also ex-
hibit various ensemble variance time series and equilibrium

climate sensitivity (Meehl et al. 2020, Table 1) and are rela-
tively independent inside the CMIP6 framework (Brunner
et al. 2020). Previous studies (Cai et al. 2014, 2015) have
shown an increase in the frequency of extreme El Niño and
La Niña events which seems consistent with the general in-
crease in the frequency we identified. Finally, this increase ap-
pears compatible with the mechanisms explaining the changes
in variability at low latitudes proposed in Olonscheck et al.
(2021) and Shi et al. (2023) (i.e., changes in vegetation, clouds,
soil moisture, etc.) which could even be consequences of the
change of ENSO, since its teleconnections are known to have
a profound impact on the water cycle in America, Asia, and
Africa, closely linked to these mechanisms.

The results obtained with the time filtering to separate the
time scales of variability have been compared to various low,
high, and bandpass filterings. The relative importance of each
time scale appears sensitive to the filtering method with, for
instance, a more important 3–5-yr band and a lower 1–3-yr
band using a fourth-order Butterworth filter. However, re-
gardless of the method used, we found the increasing fre-
quency of the variability over time and an intensification of
the interannual variability. The dominant period can be either
1–3 or 3–5 years depending on the methodology used, but it
remains an interannual variability strengthening and a shift
toward higher frequencies. In the present work, we have not
studied shorter time scales such as seasonal or intra-annual
variability. Some high-impact events (e.g., repeated heatwaves)
occur on these shorter time scales, and changes in their variabil-
ity could be different from those studied. Shi et al. (2023) inves-
tigated such seasonal changes and showed that the decreasing
high-latitude signal is reinforced in winter.

The computational cost of ensemble simulations remains a
limiting factor for the study of internal variability. On the one
hand, the quite coarse spatial resolution of CMIP6 models
means that some of them may have difficulty representing
specific climate modes such as the different types of El Niño
(canonical or Modoki). However, although some of the se-
lected models have shown such difficulties, they all show a rel-
atively good ability to represent ENSO in general, and more
particularly to predict its periodicity (Hou and Tang 2022),
which is the focus of our attention here. On the other hand,
ensemble size is also a limitation. Large ensembles with a
hundred members have already been run, but not on such
long time scales with such a wide variety of scenarios. A larger
number of members could help improve the resolution of in-
ternal variability by visiting more possible states. However,
our main results are consistent between the four ensemble
models, which have different sizes, and the confidence inter-
vals built by selecting members randomly are very narrow.
We can therefore expect the size of the ensembles to be suffi-
cient to resolve the processes studied here.

The internal variability of the climate is known to have a
potentially strong impact on human societies and ecosystems.
ENSO is a perfect example, with warm El Niño events caus-
ing forest fires and droughts in the western Pacific, Australia,
and Asia and marine heat waves in the eastern Pacific, while
cold La Niña events cause droughts in South America and
floods in Asia and Australia (Cai et al. 2021). In the present
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study, we found dramatic changes over the Amazon rain for-
est with interannual SAT standard deviation increasing by
0.67 K, which corresponds to more than a doubling.

It is usual to interpret climate changes as a modification of
the forced variability or similarly of the background state.
However, here we have shown that we may also be entering
an era of changing “internal” climate variability. For some re-
gions, this means a more variable, volatile, and unstable cli-
mate. This has the potential to strongly impact ecosystems
(Dee et al. 2020) and societies (Bathiany et al. 2018), in partic-
ular around the Pacific where the changes are stronger, but
also on the whole planet given the variance changes observed
over tropical Africa and the known teleconnections of ENSO.
It is key to integrate these variance changes in future adapta-
tion plans.
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