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ABSTRACT

Numerical simulations of coarse-resolution, idealized ocean basins under constant surface heat flux are analyzed
to show that the interdecadal oscillations that emerge naturally in such configurations are driven by baroclinic
instability of the mean state and damped by horizontal diffusion. When the surface heat fluxes are diagnosed
from a spinup in which surface temperatures are strongly restored to apparent atmospheric temperatures, the
most unstable regions diagnosed by large downgradient eddy heat fluxes are located in the basin northwest
corner where the surface heat losses are largest. The long-wave limit of the baroclinic instability of idealized
mean flows in a three-layer model with vertical shears as observed in the GCMs demonstrates that growth rates
of order one cycle per year can be produced locally, large enough to amplify thermal anomalies in the face of
lateral diffusion. The proposed instability mechanism that favors surface-intensified perturbations also explains
the lack of oscillations if the restoring to a surface climatology is too strong. To assess whether this instability
process of oceanic origin is robust enough to cause interdecadal variability of coupled ocean–atmosphere models,
a four-box ocean–atmosphere model is constructed. Given the large heat capacity of the ocean as compared to
the atmosphere, the dynamical system that governs the model evolution is reduced to only two degrees of
freedom, the oceanic overturning thermohaline circulation and the interior north–south temperature gradient.
The authors show that, when the baroclinic instability growth rate exceeds the overall dissipation caused by
turbulent eddy diffusion in the atmosphere and ocean and infrared back radiation, the dynamical system undergoes
a Hopf bifurcation, and interdecadal oscillations emerge through a limit cycle.

1. Introduction

Interdecadal variability of the temperature of the sur-
face layers of the ocean has been identified very early
by Bjerknes (1964) and later by Deser and Blackmon
(1993), Kushnir (1994), and Hansen and Bezdek (1996)
among others. The variability takes the form of large-
scale surface-intensified anomalies. The EOF analysis
of Deser and Blackmon for the North Atlantic reveals
the dominance of a dipole, clearly intensified near the
western boundary roughly situated off Newfoundland.
Reverdin et al. (1997) showed that the anomalies are
surface intensified and that the salinity signal in the
North Atlantic is coherent with the temperature signal.
They point out that the region of the slope current is a
likely origin for the long-period fluctuations. Following
Stommel’s (1961) idea that different boundary condi-
tions for temperature and salinity could lead to multiple
steady states of the thermohaline circulation (THC),
Marotzke (1990) and Weaver and Sarachik (1991) noted
that oceanic GCMs run under mixed boundary condi-
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tions (restoring for temperature, flux for salinity) can
also exhibit decadal oscillations with clear advective
origins. The study of the oscillations was then pursued
in simpler contexts with only one active variable, forced
by surface constant flux; see Huang and Chou (1994),
Greatbatch and Zhang (1995), Cai et al. (1995), and
Chen and Ghil (1995). Greatbatch and Zhang pointed
out the strong similarity between the oscillations ob-
served in such a square-box ocean model forced solely
by constant heat flux and those of the fully coupled
GFDL ocean–atmosphere model described by Delworth
et al. (1993). The oscillations obtained under constant
flux were shown to persist in a similar form by Chen
and Ghil (1996) when a simple ocean model was cou-
pled to an energy balance model (EBM) of the atmo-
sphere, removing the assumptions of constant flux at
the air–sea interface. What was demonstrated in that
study is that, at the very low frequencies of concern
here, the ocean sees almost a constant heat flux with
time variations much smaller than mean values. A siz-
able fraction of the constant solar flux at the top of the
atmosphere drives the ocean below. Furthermore, a
number of sensitivity runs allowed them to suggest that
the transition from a steady THC to an oscillatory one
occurred through a Hopf bifurcation as either the at-
mospheric turbulent heat diffusivity or the ocean–at-
mosphere coupling coefficient decreased.
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Although the advective origin of the interdecadal os-
cillations under mixed boundary conditions was rec-
ognized early by Weaver and Sarachik (1991), the pre-
cise mechanisms under which the oscillations proceed
have remained elusive. Winton (1996) demonstrated
clearly the three-dimensional character of the oscilla-
tions by comparison with two-dimensional simulations
that did not exhibit this type of interdecadal variability.
Winton (1996) and Greatbatch and Peterson (1996) sug-
gested that key to the oscillatory nature of the THC is
the existence of boundary-trapped waves that propagate
in the Kelvin wave sense. Winton proposed that the
oscillation is triggered by thermal wind currents im-
pinging normal to the eastern boundary, the resulting
anomaly propagating in an uninterrupted manner around
the basin. Greatbatch and Peterson further observed that
only the western boundary was crucial to the existence
of the oscillations and suggested that southward prop-
agating boundary waves perturb the western boundary
current that in turn generate perturbations that are ad-
vected to the northeast corner and play a role in reini-
tiating the wave propagation. If this region plays an
important role, the demonstration of the absence of sen-
sitivity to relaxation along the northern–eastern bound-
ary is problematic. Huck et al. (1999a, hereafter HCW)
carried out a specific f -plane experiment with sym-
metric forcing in latitude (the northern boundary being
removed) and showed that interdecadal oscillations pro-
ceeded in much the same way without boundary wave
propagation. A long series of experiments under con-
stant flux showed further that forcing amplitudes and
rotation were conducive to the oscillatory state (stronger
amplitudes), while the mixing processes such as con-
vection, horizontal mixing and dissipation were of a
damping nature (smaller amplitudes). Runs without the
b effect showed that the variation of the Coriolis pa-
rameter with latitudes was not crucial as noted earlier
by Winton. Although the character of the oscillations is
essentially three-dimensional, HCW showed that the os-
cillation can be described using only two active vari-
ables: the strength of the overturning c and the merid-
ional south–north temperature difference anomaly DT.
Through heat conservation, the rate of change DṪ relates
to the temperature advection as (2cDT), while it is
observed in the numerical experiments that c itself does
not relate to DT as in Stommel’s (1961) model but in-
stead that the derivative relates to DT—the existenceċ
of such a phase lag between overturning and temperature
gradient was already discussed by Greatbatch and Pe-
terson. It is the existence of this quadrature between the
‘‘interior forcing’’ DT and the western boundary current
(which is the dominant contribution to the overturning
c) that sustains the oscillations. The origin of this time
delay is really three-dimensional through a combination
of advection and wave propagation. It is reminiscent of
the spinup of an ocean basin driven by a wind stress
curl (Anderson and Gill 1975) in which the western
boundary current builds up and narrows on the timescale

it takes for Rossby waves to cross the basin. While
Winton (1996) and Greatbatch and Peterson (1996) ad-
vocate the importance of viscous Kelvin waves in the
adjustment, interior potential vorticity (PV) waves exist
in the presence of an underlying mean circulation and
stratification. They can be observed, even in pure f -
plane cases, to play a role in establishing the period of
the oscillations. The main point that we want to discuss
in this paper is concerned, however, with the energy
sources of the oscillations and we want to draw the
attention to ‘‘the wavemaker’’ that must be present to
sustain the oscillations in the face of dissipation because
the coarse-resolution models that we are using are in-
deed very dissipative! Given that the oscillations that
are observed are truly three-dimensional, it is very dif-
ficult to find out ‘‘what is driving what’’ unless a sys-
tematic search for the energy sources is made. This is
essentially what we report in this paper. In the absence
of explicit momentum advection, no conversion from
mean kinetic energy is possible and the only remaining
possibility involves the conversion from mean potential
energy through baroclinic instability. This process has
been identified in the western boundary current region
that plays the role of a wavemaker to excite whatever
waves are possible in the interior. To demonstrate this
proposition a number of planetary geostrophic (PG)
simulations are carried out in a situation where the ocean
is first put to steady equilibrium under restoring bound-
ary conditions at the surface and then allowed to depart
from this initial state under the diagnosed flux kept con-
stant from there on. This procedure generates the fa-
miliar western intensification of buoyancy flux that is a
key feature of large-scale ocean–atmosphere interaction.
Once in this configuration of constant flux, classical
stability analyses of the numerical solutions are possible
and the dominant destabilizing factors identified (sec-
tion 2).

If our conjecture that baroclinic instability is the dom-
inant process driving the oscillations is correct, then the
simplest model exhibiting baroclinic instability at scales
beyond the Rossby radius of deformation is a three-
layer model. A third layer is needed because on these
long interdecadal timescales, the barotropic mode is al-
ways in equilibrium with its forcing and is then unlikely
to play an important role. It is, in any case, absent from
our flat-bottom, buoyancy-driven experiments with no
bottom friction. The growth rates of unstable pertur-
bations to idealized mean flows whose vertical shears
are calibrated from the numerical model solutions are
discussed in section 3.

Finally we continue Chen and Ghil’s (1996) lines of
thought in section 4 to construct a coupled ocean–at-
mosphere box model that shows that their important
suggestion of a transition from a steady to an oscillatory
state via a Hopf bifurcation can be interpreted in a some-
what different way: we propose that the limit cycles of
the oscillations arise when the growth rate of pertur-
bations (due to the baroclinically unstable western
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FIG. 1. Sensitivity of the interdecadal oscillations to (a) variations of the amplitude of the meridional distribution of
surface heat flux; (b) variations of the vertical diffusivity coefficient (log–log plot); (c) variations of the horizontal
diffusivity coefficient. Abcissa is the horizontal Peclet number UDx/Kh with U 5 1 cm s21 and Dx 5 160 km and
ordinate is the square root of the kinetic energy. Note that no oscillations are found for Peclet numbers less than 0.64
(associated with diffusivity coefficients larger than 2500 m2 s21); and (d) variations of the restoring constant (when
the surface temperature is restored to a linear meridional temperature distribution). The presence (3) or absence (V)
of the oscillations is indicated along with the oscillation index in the former case. The mean overturning strength is
plotted on the vertical axis, since the restoring atmospheric temperatures are changed along with the restoring constant.
Note that oscillations disappear for values between 20 and 25 W m22 K21. All of these results have been obtained with
the HR configuration (Table 1) for the solid line, but with a purely geostrophic model (no momentum dissipation but
no-slip boundary conditions imposed) for the dashed line. The oscillation index is the basin average of temperature
standard deviations over a period.

boundary current region) exceeds the diffusive timescale
resulting from the cumulative damping action of tur-
bulent oceanic–atmospheric diffusivities and infrared
back radiation. On these interdecadal timescales, the
atmosphere is restricted to a damping role with its var-
iables enslaved to the active oceanic variables.

2. Evidences for baroclinic instability

a. Critical damping terms

HCW’s experiments have identified the parameters
that govern interdecadal oscillations, with essentially the
amplitude of the surface flux driving the variability and
all mixing processes but vertical mixing acting as a
brake. Figure 1 summarizes some of these results that
demonstrate the geostrophic/inviscid character of the
oscillations. The reader is referred to HCW’s paper for

details of the experiments that led to the construction
of these figures. Essential parameters of these medium
resolution (HR) runs are recalled in Table 1. We first
define an oscillation index as the basin-mean standard
deviation of temperature over one period of the oscil-
lation and consider the influence of an imposed surface
heat flux zonally uniform and linearly varying in lati-
tude. As the amplitude of the forcing increases, so does
the oscillation index (Fig. 1a). If instead the forcing is
kept constant but the vertical mixing increases, the os-
cillation index again increases (Fig. 1b). Since higher
vertical mixing implies a stronger overturning of the
mean circulation, both results stress that the more en-
ergetic the mean circulation, the larger the amplitude of
the oscillations.

As shown in HCW, the horizontal diffusion appears
as the main damping for controlling the oscillation am-



896 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

TABLE 1. Configurations of the low-resolution (LR) and the higher-resolution (HR) runs discussed in the text. The models are described in
details in Colin de Verdière (1988) and Huck et al. (1999b), respectively. They are based on the planetary geostrophic equations with
Laplacian friction closure for a flat-bottomed Cartesian b plane centered at 408N and extending from 208 to 608N. KH (KV) is the horizontal
(vertical) diffusivity, while AH is the horizontal viscosity (compared to which vertical viscosity is safely negligible).

Model

Domain

Lat
(km)

Long
(km)

Depth
(m)

Grid points
(long 3 lat 3 vert)

Grid
spacing

(km)
KH

(m2 s21)
KV

(m2 s21)
AH

(m2 s21)

LR
HR

4500
4480

6000
5120

4500
4500

12 3 16 3 15
32 3 28 3 15

375
160

2000
700

1024

1024

1.0 3 106

1.5 3 105

plitude (Fig. 1c). For values beyond 2500 m2 s21, no
oscillation is observed. The relevant nondimensional pa-
rameter is the horizontal Peclet number defined at the
resolution scale as UDx/Kh whose value at the critical
threshold is 0.64. We observe that the amplitudes of the
oscillations (as measured by the square root of the ki-
netic energy) increase as the square root of the deviation
of the Peclet number from its critical value, suggesting
a supercritical Hopf bifurcation. Around the bifurcation
the oscillation period is nearly constant (29 yr) and sim-
ilar to the damped oscillations in the nonoscillating re-
gime. A similar transition with respect to variations of
the coupling coefficient was observed by Chen and Ghil
(1996) in an ocean model coupled to an energy balance
model. Dispersion by oceanic mesoscale eddies at a dif-
fusivity rate of 1000 m2 s21 gives a Peclet number of
1.6, suggesting that the real ocean might well operate
within the regime of oscillations. From this critical value
of the damping, we can infer the actual growth rate of
the instability that sustains the oscillations. At the hor-
izontal resolution, Dx 5 160 km, of these sensitivity
experiments (HR runs), a timescale Dx2/KH of 120 days
emerges. In comparison the vertical mixing plays a very
weak role to damp the anomalies: The diffusive time-
scale Dz2/KV reaches 3 yr for a 100-m depth interval at
the pivot value of 1024 m2 s21. This very weak direct
damping effect of vertical mixing is, in fact, more than
counterbalanced by the increase in the mean THC that
follows an increase in KV. Of course, the convective
adjustment acting as a very large vertical diffusion
where static instability occurs plays a significant damp-
ing role on the oscillations as shown in HCW.

If the surface forcing is now a relaxation toward an
apparent atmospheric temperature, we can again find a
critical value for the relaxation coefficient [l 5
d(heatflux)/dT] that separates the oscillatory solutions
from the steady ones (Fig. 1d). The critical value so
obtained l ø 22 W m22 K21 corresponds to a timescale
of rCpDz/l 5 105 days for the HR run mixed layer
depth (50 m), which agrees well with the one inferred
above from variations of the horizontal diffusion. This
is a valuable result in view of the analysis of Seager et
al. (1995), who showed through modeling of the re-
sponse of the lower atmosphere to SST anomalies that
the sensitivity of heat flux with respect to SST was of
the order of 15 W m22 K21, significantly less than values
currently used in ocean models. Such a value translates

to a restoring coefficient of order one cycle/year for 100-
m vertical resolution, and the present results suggests
that Seager et al.’s inferred values are low enough to
allow interdecadal oscillations to occur.

To summarize the damping nature of horizontal dif-
fusivity and the active nature of the mean-state advec-
tion, the Peclet number UL/Kh appears as a key param-
eter that controls the strength of the oscillations while
the sensitivity of heat flux to SST, which is also very
important, could be measured against advection by a
number such as rCpU/l.

b. Description of the oscillation

We describe here the spontaneous oscillations that
arise after the model has been spun up for thousands of
years to steady equilibrium under restoring boundary
conditions, the surface fluxes diagnosed and kept con-
stant from there on. Having many runs of different res-
olution at our disposal, we have decided to illustrate the
oscillation with a low-resolution run that can be easily
reproduced with modest computing equipment (LR run,
see Table 1). Of course, most of the analysis that follows
has been reproduced at both low and medium resolution
with no essential differences.

After a transient phase of 10–15 yr (described later)
the perturbations grow and evolve into an oscillatory
state (Fig. 2) that is independent of the initial pertur-
bation that triggers the instability. The thermal anom-
alies are surface intensified and prominent in the north-
west quadrant where the cooling is greatest. The current
anomalies circulate along the contours of the temper-
ature anomalies leaving little net eddy heat flux except
near the western boundaries. The motions are geostroph-
ic with little interior divergence. In much the same way
as for the mean field, the anomalies of the divergence
field are concentrated along the western and northern
boundaries, upwelling and downwelling occurring there
to connect the surface current anomalies to the deep
current anomalies (of the opposite sense since no net
barotropic transport is permitted).

In Fig. 2, the oscillation is shown initially in a state
of weak thermal structure. On the other hand, the west-
ern boundary current (WBC) anomaly is strongly pos-
itive, being fed through upwelling along the coast. At
t 5 3y the overturning is at its maximum and induces
by t 5 6y a western intensified positive thermal anomaly
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FIG. 2. The anomalies of surface temperature and surface currents during a full cycle of the oscillations (LR
run). Basin size is 6000 km by 4500 km. Frames are 3 years apart. The overturning maximum (minimum) are
indicated. The largest temperature and velocity anomalies correspond roughly to ½8C and ½ cm s21.



898 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 3. Characteristic diagram in the x–t plane at a central latitude
(a) and (b) in the y–t plane averaged over the western boundary
current region (c).

that covers half of the basin. The WBC anomaly is now
oriented in the northward direction, part of the transport
being supplied by the recirculation from the southern
branch of the warm anomaly. The net overturning is
now weaker and the situation has evolved from a pre-
vailing vertical recirculation to a horizontal recircula-
tion. From t 5 6y to t 5 15y, a westward propagation
of the warm anomaly is readily apparent. As the anom-
aly reaches the western boundary, the positive WBC
anomaly disappears and reverses when the southward
moving branch of the warm anomaly has reached the
western wall. At this point, the vertical recirculation
phase has resumed, but in the opposite direction with
little horizontal interior recirculation, and the overturn-
ing is at its minimum. Then the negative WBC anomaly
induces an offshore interior cold anomaly and the sec-
ond half of the period of oscillation proceeds similarly.
Maxima of domain-averaged potential and kinetic en-
ergy are associated respectively with the phase of the
cold surface temperature anomaly and the overturning
maximum. At t 5 3y the kinetic energy is maximum
and the potential energy small (warm anomaly at sur-
face), the situation reversing at t 5 15y, about one-
quarter of a period later.

Characteristic phase diagrams (Figs. 3a and 3b) in the
x–t plane show a partition of the domain between the
western third where the temperature oscillations are
large and stationary and the remaining interior in which
weaker thermal anomalies propagate westward against
the mean eastward circulation in the northern part of
the basin. In the meridional plane the anomalies of the
WBC present also the character of stationary oscilla-
tions, intensified in the northern part of the domain (Fig.
3c). We next show that the distinct character of the
oscillations (stationary versus propagative) in the dif-
ferent subregions is associated with vastly different heat
transports. To concentrate on the mechanisms that drive
the oscillations, we have examined the various terms of
the equation governing the evolution of eddy temper-
ature variance, the ‘‘mean’’ (overbar) being defined as
the initial state of the constant flux experiment and the
‘‘eddy part’’ (prime) as departure from that initial state.
The terms that dominate the growth of temperature var-
iance are of the form (2 T9 ]T /]xi). We observed thatu9i
the terms containing vertical velocities are at least one
order of magnitude less than the horizontal terms so that
only the latter are illustrated in Fig. 4. The largest pos-
itive term appears to be the downgradient north–south
eddy velocity temperature fluxes (2y9T9]T /]y) that
dominates in the northern third of the western boundary
region. Since the mean ]T /]y is negative, positive y9T9
eddy fluxes at the western boundary appear to be at the
heart of the existence of the oscillations. Fortunately,
in these experiments, the regions with positive values
(enhancing the anomalies) remain in the same location
such that the time-averaged pattern is similar to instan-
taneous situations (on the contrary, under zonally uni-
form flux, temperature anomalies do travel around the
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FIG. 4. The driving terms of the equation for temperature variance (HR run). Largest values
occur for meridional fluxes in the northwest corner. The mean surface circulation that is super-
imposed shows that the most unstable region is located where the western boundary current turns
eastward.

northern half of the basin and the region where the terms
are positive do vary a lot along a period: the time-
averaged pattern is then almost an order of magnitude
smaller than the instantaneous snapshots and there is no
well-defined driving area). The vertical structure of the
y9T9 eddy fluxes (Fig. 5) shows a surface and western
intensification. The source region of the temperature
variance coincides with the region of highest variance,

in agreement with the stationary character of the oscil-
lation in the northwest quadrant. Note, on the other
hand, that the region of active interior propagation is
associated with neutral or damping conditions. The ex-
istence of the near-surface positive y9T9 is obvious from
a comparison of the velocity and temperature time series
in Figs. 3a and 3b. Near the western boundary merid-
ional velocity and temperature correlate positively to a
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FIG. 5. Longitude–depth section of the meridional eddy fluxes n9T 9
at a central latitude (LR run). Values must be multiplied by 1026 to
obtain cm s21 K units.

FIG. 6. Characteristic z–t diagram of the temperature field at a point
situated in the unstable northwest corner region (LR run). The phase
shift of the temperature distribution appears below the mixed layer.

high degree. The alongshore velocity being nearly geo-
strophic, the pressure extrema must lie to the east of
temperature extrema. But since the determination of the
hydrostatic pressure amounts to a simple integration of
the temperature field, we are led to conclude that phase
lags exist necessarily between temperatures at various
depths, a confirmation being provided by Fig. 6. A sig-
nificant vertical phase lag appears between the upper
levels where convection dominates and the lower levels
that lag by a quarter period. In contrast no such vertical
shifts have been observed in the stable interior regions
of the basin. This reminds one of the classical three-
dimensional organization of baroclinically unstable per-
turbations of a zonal mean flow found under quasi-
geostrophy. This familiar index of vertical phase lag is
indeed necessary to allow downgradient eddy heat flux-
es and release of potential energy when the flow is in
approximate geostrophic and hydrostatic balance. These
observations strongly suggest that the basic driving
mechanism of the interdecadal oscillations is a local
baroclinic instability of the western boundary region.
This is in agreement with the previously mentioned
nearly perfect phase opposition between the total po-
tential energy and the kinetic energy (whose most part
comes from the western boundary current, which is the
largest contribution to the overturning). This association
of vertical phase shift of the temperature distributions
(required for the existence of downgradient eddy heat
fluxes) and baroclinic instability helps to understand
why the oscillations are observed to be damped by the
convection scheme adjustment (HCW) since the latter
acts to remove all vertical structure and phase lags nec-
essary for the instability.

Given the horizontal boundary layer structure of the
mean velocity profile near the western wall, and the
complicated vertical distribution of the mean currents

necessary to equilibrate the mean buoyancy loss at the
surface, the basic state that we must deal with is far
more complicated than the idealized zonal flows com-
monly used in baroclinic instability studies. However,
the observed signature of the unstable motions are tell-
ing us that similar mechanisms operate albeit in a more
complicated geometrical setting. The theoretical stabil-
ity analysis of a mean state such as ours is a daunting
perspective but we believe that we can increase our
confidence and judge the efficiency of this baroclinic
instability process by neglecting entirely the horizontal
boundary layer structure of the mean state and obtaining
growth rates of perturbations of a mean flow with re-
alistic vertical shears only. This neglect of the horizontal
structure is justified in part because no transfer from the
mean kinetic energy is possible in our model equations
(see section 3).

c. The initial instability

Since we allude to an instability mechanism as a way
to sustain the oscillation against dissipation, it is worth
looking at the transient phase immediately after the con-
stant buoyancy flux has been switched on. When the
previous run (with restoring surface boundary condi-
tions) has been integrated for a long time (4000 yr), it
appears that such a state is stable under a switch to flux
conditions when initial external perturbations are absent.
In some cases, Cai et al. (1995) and Greatbatch and
Peterson (1996) have triggered the oscillations by mod-
ifying the forcing through a zonal redistribution of the
surface heat flux. If an instability is at the heart of their
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FIG. 7. The terms of the temperature equations at a given time (45
years after switch to flux condition, LR run) and at midbasin latitude
as a function of zonal distance across the basin: (a) vertical terms,
and (b) horizontal terms.

existences, such a procedure mixes the instability pro-
cess and the spinup toward a new equilibrium with the
modified forcing. A more traditional hydrodynamic sta-
bility practice is simply to add a small amplitude tem-
perature perturbation to the initial state. A large range
of initial perturbations (uniform temperature anomaly,
different Fourier modes) have been added in the surface
layers to show that over a 10–15-yr period the model
state converges to the same previously described oscil-
lation pattern (Fig. 2) independent of initial conditions,
its full amplitude being obtained after several periods
of oscillations. The transient state itself is patterned after
the initial perturbations, and for instance with a uniform
surface temperature anomaly, a front appears along the
boundary of the convection region, but the anomaly
progressively builds up in the northwestern quadrant to
take the organized structure in Fig. 2. We have checked
that the initial growth rates of a given perturbation dur-
ing the first few years (as measured from the rms ve-
locity or rms temperature) is independent of initial am-
plitudes to show that the instability is not of a finite-
amplitude nature. We have also observed that, if the run
with restoring boundary condition is further from equi-
librium due to a shorter time integration, there is no
need for external perturbations to trigger the oscillations
following a switch to flux conditions. After only a few
months, a perturbation builds up in the western bound-
ary region where the buoyancy loss (negative heat flux)
is largest. This is in the unstable region that was pointed
out previously. We may expect that any imbalances in
that region will amplify rapidly because of the baroclinic
instability mechanism, which is strongest where mean
vertical shears are largest. To equilibrate heat losses at
the surface by horizontal heat advection of nearly geo-
strophic currents requires precisely the existence of such
large mean vertical shears.

d. The structure of the interior temperature
anomalies

The surface-intensified temperature anomalies that
emerge under flux boundary conditions after a transient
phase of several oscillation periods have a well-defined
spatial and temporal structure that needs to be ratio-
nalized because it has already been shown in HCW that
the observed quadrature between the western boundary
current and the interior temperature gradients is central
to the oscillation mechanism. One may expect then that
the interdecadal periods found in GCMs are somehow
related to the propagation time of the anomalies across
the basin. To account for the wave propagation observed
in Figs. 3a–c, we point out a very simple mechanism
that relies on the existence of the underlying mean flow.
The first obvious comment is that, away from the west-
ern boundary current region, the interior perturbations
are geostrophic with fluid circulating along the iso-
therms in agreement with the weakness of the eddy
fluxes (Fig. 4). In the present simulations there is a

distinct boundary between the stable and unstable re-
gions that disappears in experiments with zonally uni-
form flux for which the instability processes are not
confined near the western boundary. To understand why
the anomalies are not simply passively advected by the
dominant eastward mean flow in the northern part of
the basin, let us consider a warm perturbation embedded
in a mean temperature gradient with temperature de-
creasing northward: west (east) of its center, northward
(southward) surface-intensified perturbation velocities
bring warm (cold) water that propagates the anomaly
toward the west. This is exactly the classical argument
for Rossby wave propagation with the mean meridional
temperature gradient taking the role of the b effect.
However, there is a mean eastward flow that is also
associated with the mean temperature gradient so that
a competition arises between mean advection and prop-
agation. In some of our experiments, the westward prop-
agation dominates while in others, the two effects nearly
equilibrate. It is possible to gain some insight into such
dynamics by considering the various terms of the tem-
perature anomaly evolution equation. The leading terms
(Fig. 7) governing the evolution of thermal anomalies
are horizontal mean advection of anomalies, horizontal
eddy advection of the mean temperature, and horizontal
diffusion. What is worth remarking is that the vertical
terms do not seem to play an important role in the in-
terior, and horizontal terms dominate over vertical ones
(for both advection and diffusion). The two advective
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terms that dominate the interior heat balance are, there-
fore,

]T9 ]T
U 1 y9 .

]x ]y

Because both mean flows and anomalies are surface
trapped, we look for separation of variables and assume
exponential dependence in the vertical as

U 5 kUz with z increasing upward.6y9 5 k9y9z

Using the thermal wind equation, the above transforms
into

ga ]T ]T9
21 21(k9 2 k ) ,

f ]y ]x

where a is the thermal expansion coefficient. The in-
terior temperature anomalies obey to leading order

]T9 ]T9
22 c 5 K ¹ T9,H]t ]x

where

ga ]T
21 21c 5 (k 2 k9 )

f ]y

and the diffusion term has been added for completeness.
This relation describes a zonal propagation, the y and
z dependence appearing parametrically. Since the mean
temperatures decrease northward, the observations of
the LR runs (Fig. 3a) that indicate dominant westward
propagation in the interior (c . 0) correspond to the
case for which eddy advection of mean temperature
dominates over mean zonal advection of the anomalies,
a result consistent with what is observed in the heat
balance. The above relation implies that this particular
regime occurs because the waves are shallower than the
mean flow (k9 . k). These waves represent a particu-
larly simple subset of nondivergent surface-trapped PV
waves. Note that the restoring force in this example
comes from the gradient of potential vorticity provided
by the mean meridional temperature gradient, and not
by b, so that such waves are allowed on f planes as
well. The effect of lateral diffusion is to allow for a
second mode, which in the case of positive c is prop-
agating eastward. When the Peclet number (based on c)
is large, the mode has a short eastward decay scale KH/c
so that it is expected to play a role on the western side
of a basin.

3. Baroclinic instability in simplified analytical
and numerical models

Motivated by the previous idea that baroclinic insta-
bility of the western boundary current region provides
the energy source for the oscillations to be maintained
against dissipation, we wish to evaluate its strength as

gauged by the growth rate of unstable perturbations on
a realistic mean flow. Although baroclinic instability is
of central importance to eddy production in midlatitude
oceans and atmospheres at the scale of the Rossby radius
of deformation, the question is really whether it may be
active at scales much beyond the Rossby radius. The
Phillips (1954) two-layer model of a zonal flow shows
this not to be the case because of the existence of a low
wavenumber cutoff that suppresses the instability of the
largest scales. With such a crude vertical resolution, the
barotropic and baroclinic modes are incapable of strong
interactions essentially because their timescales become
too unequal, the barotropic timescale becoming very
much smaller than the baroclinic one for large spatial
scales. Models with continuous vertical structure, such
as Eady’s or Charney’s, do not have such large-scale
cutoff essentially because higher baroclinic modes are
involved in the interaction. Studies of the THC at coarse
resolution in PG models neglect entirely relative vor-
ticity, an assumption that is justified by the excellent
comparison with full PE models. The consequence is
that the barotropic mode becomes entirely diagnostic
and hence unable to participate in the baroclinic insta-
bility (in fact, in our box geometry, buoyancy-driven
simulations devoid of bottom friction, it is exactly zero).
Therefore, we are led to think that large-scale baroclinic
instability is allowed if interactions between higher bar-
oclinic modes are possible and one may expect models
of the THC under constant flux to behave in a rather
different way if the number of layers in the vertical is
smaller or larger than two, a point to which we will
come back. The existence of baroclinic instability at
planetary scales has already been shown theoretically
by Colin de Verdière (1986) and Cavallini et al. (1988).
However none of the thermohaline circulation simula-
tions reported so far in the literature ever mentioned
active baroclinic instability. Given that the unstable per-
turbations are surface intensified, we believe that the
reason lies with the presence of the strong restoring
boundary conditions on surface temperature and/or sa-
linity. When the surface fields are restored on a time-
scale shorter than the growth rate of the baroclinically
unstable perturbations, there is no way that the insta-
bility may amplify. The situation is vastly different,
however, under flux boundary conditions (or mixed
boundary conditions) because no such external controls
exist to damp the unstable waves. At this point what is
needed to confirm this idea is to find out the growth
rates for large-scale flows with realistic vertical shears
and judge the vigor of the instability by comparing them
with the damping timescales associated with the re-
storing boundary conditions or lateral diffusivity present
in numerical calculations. Although dissipation is small,
we are looking for a mechanism that applies for b planes
as well as f planes. In the absence of relative vorticity
advection, friction is needed to break the geostrophic
constraint. Given that the instability appears in the sim-
ulations in regions such as near the western boundary
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where friction, although small, is not negligible, leads
to study the problem under PG dynamics with Laplacian
friction included. Of course, the experiments show the
instability of a very complicated basic state, that of a
western boundary current hugging a wall with vertical
as well as horizontal shear—a situation far too com-
plicated to study analytically. Consequently, we sim-
plify the picture and consider the stability conditions in
an unbounded domain.

a. Linear instability calculations

It is simpler to study the instability using constant
density layers of varying depth in the vertical. When
the advection of momentum is neglected, it is easy to
show that the only remaining nonlinearity, the advection
of layer thickness, vanishes identically in the two-layer
case. Consequently, as argued previously, the interaction
of higher baroclinic modes is a necessary condition for
baroclinic instability and a three-layer model provides
the essentials. The three layers are of density ri and
thickness hi with i 5 1–3 numbering the layers from
the top. A rigid lid imposed at the surface and a flat
bottom gives

3

h 5 H,O i
i51

where H is the uniform fluid depth. Since the barotropic
mode is zero, the condition S hiui 5 0 reduces the prob-
lem from three to two degrees of freedom in the vertical,
that is, the first and second baroclinic modes. The pres-
sure being hydrostatic, the geostrophic velocity can be
expressed in terms of the layer thickness after use of
the two above conditions (here j is a vertical unit
vector):

f j 3 u 5 g9=h 1 g9=hg1 1 1 3 2

f j 3 u 5 g9=(h 1 h ). (1)g2 3 1 2

Because the two upper layers are supposed to rep-
resent the main thermocline, h1 and h2 have been as-
sumed small compared to H. The reduced gravity isg91
g(r3 2 r1)/r0, and is g(r3 2 r2)/r0. Although mostg93
studies of baroclinic instability choose basic states that
consist of zonal flows, the experiments do not suggest
this to be a particularly good choice since the predom-
inantly meridional flows along the western boundaries
appear to be potentially the most unstable. On a b plane
departing from the zonal flow assumptions implies the
instability of forced flows. However, when the buoyancy
forcing is stationary, the case of interest here, the mass
conservation equations for the perturbations do not con-
tain the forcing and hence for each layer the linearized
perturbations (with primes) obey

]
1 U · = h9 1 u9 · =H 1 H = · u9 1 h9= · U 5 0,i i i i i i i i1 2]t

(2)

where U i and Hi represent the velocity and layer thick-
ness of the mean state.

A first remark concerns the last term = · Ui, whichh9i
is not present in ‘‘free’’ baroclinic instability calcula-
tions, the mean flow being assumed divergenceless.
However, suppose that the mean flow is horizontally
convergent (as would happen in the neighborhood of
solid boundaries in our simulations for instance), then
we can expect exponential growth of the layer i at a
rate that is just 2= · Ui. The example of the surface
layer in a cooling region illustrates the effect of that
sole term: if the full depth h1 becomes larger than the
mean depth H1, then the convergence of mass flux ex-
ceeds the constant diapycnal mass loss to the lower layer
(the buoyancy forcing), and the lower interface will con-
tinue to deepen in an unstable fashion. Although the
divergence of the mean flow in the numerical experi-
ments is nonzero, the previous examination of the lead-
ing terms in the heat balance has shown that the terms
containing vertical velocities are small, and therefore
we simply assume that the term associated with mean
flow divergence does not play a major role in the in-
stabilities that are observed. We assume a constant mean
flow in the following local analysis and neglect entirely
the mean flow divergence from now on.

In the inviscid case (i.e., with geostrophic velocities)
it is not difficult to show that a necessary condition for
linear perturbations (varying as ei(K · x2vt)) to be unstable
is that the quantity K 3 =( f/Hi) changes signs between
layers one and two, where f/Hi is simply the mean PV.
If the mean PV gradients are parallel, then instability
requires them to be opposite in each layer, while, if they
rotate from one layer to the next, it is always possible
to find a direction of a wavenumber vector that allows
the quantity to change sign. This necessary condition
appropriate to the inviscid case is not very useful in the
present discussion. Although Colin de Verdière (1986)
has shown that b was essential to the existence of the
instability in the inviscid case, the numerical experi-
ments show without doubt that interdecadal oscillations
exist on an f plane (see HCW). If the claim is made
that large-scale baroclinic instability drives these oscil-
lations, we need to demonstrate that it works on f planes
as well as on b planes. There can be no conversion from
potential to kinetic energy without vertical velocities
that a strict adherence to f -plane geostrophy precludes.
So, paradoxically, the consideration of friction by al-
lowing divergence of the perturbations actually broad-
ens the conditions for the existence of baroclinic insta-
bility at large scales. It will, in particular, allow for
nonzero growth rates in f -plane cases. Adding a La-
placian dissipation in the horizontal momentum equa-
tions makes a correction to the geostrophic perturbation
velocities introduced in (1) as

u 1 Ej 3 ugi gi
u 5 . (3)i 21 1 E
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The velocity amplitudes above are function of time
only, and E 5 A|K| 2/ f is a horizontal wavenumber-
dependent Ekman number. Knowing for each waven-
umber how the perturbation thicknesses relate to ve-
locities allows one to cast Eq. (2) in terms of thickness
only, and it is then an algebraic task to calculate eigen-
values. To carry out the calculation, a mean flow profile
must be chosen. The most unstable region delineated in
our experiments by the maximum downgradient eddy
heat fluxes in Fig. 4 appears to be slightly north of the
midbasin position in the western boundary region. The
surface-trapped current has a northeastward direction
(LR run) that veers sharply to the left going deeper, a
veering that is entirely consistent with the warm water
transport that the WBC must carry out to equilibrate
surface cooling. The thermocline deepens to the east
and even more to the south due to the large zonal shear
that is observed. To represent the full vertical structure
with a three-layer model, we averaged mean velocities
and densities over the thicknesses chosen for the layers.
Figures 8a and 8b show the growth rates as a function
of horizontal wavenumbers amplitude for the LR and
HR cases, respectively. Typical growth rates of one to
two cycle per year are obtained for realistic values of
the friction coefficient and mean vertical shear. These
values have to be compared with the damping rates
associated with lateral diffusion that increase with the
square of wavenumber. Taking it into account, it is read-
ily seen from the figures that baroclinic instability is
allowed in a window that opens at the low wavenumber
end. The horizontal scales of the perturbations (half
wavelengths say) that maximize the growth rates are
typically of the order of ten Rossby radius of defor-
mation (the Rossby radius is 70 km in these examples).

How do these growth rates compare with the obser-
vations in the numerical model? First, we observe qual-
itative agreement between these values and the numer-
ically derived damping rate thresholds (section 2a), be-
yond which the interdecadal oscillations are not ob-
served. Second, we have added some very small
perturbations (0.018C) to the mean state of the model
(LR run) to satisfy the conditions of linearization that
underlie the above analytic calculations. The model is
then integrated for about 20 years and an appropriate
measure of the growth rate over that period is obtained
by dividing the temperature variance rate of change by
the variance. This quantity is then averaged in the ver-
tical and over time. Irrespective of the initial shape of
the surface perturbations, positive growth rates for the
temperature variance of 1–2 cycles per year are ob-
served to develop invariably in the northwest quadrant
(Fig. 9). To compare with the analytically derived
growth rates, such values would have to be divided by
2. We consider this favorable comparison between the
growth rates observed in the numerical experiments and
those from the three-layer model as another piece of
evidence that adds to our case. It is tempting to use
these types of calculations to try to predict when inter-

decadal oscillations should appear in a GCM simulation.
In principle, the computed growth rates that depend on
friction and shear could be compared with the timescales
associated with the damping processes (lateral diffusion
and restoring boundary conditions). The effect of the
intensity of the shear is straightforward. For a given
friction coefficient, Fig. 8d shows that there is a linear
relation between the growth rate and the upper vertical
shear. However, the dependence on the friction coeffi-
cient is considerably more complex. In the particular
example of Fig. 8c, it is observed that the growth rates
go to zero as the friction increases but there is a second
cutoff if the friction is too low (outside the range of
values explored in the figure) because, as argued pre-
viously, the perturbations must have some vertical ve-
locities, hence divergence for the instability to proceed.
Because of this difficulty and because of the calibration
of the vertical structure that is inherent in this kind of
comparison, it is difficult to provide a simple criterion
that would offer quantitative predictive skills for the
presence of interdecadal oscillations.

b. Layered-model numerical calculations

To further assess the efficiency of the proposed in-
stability process, a number of exploratory runs have
been carried out with the same layered formulations as
above, the diabatic forcing being introduced through
mass exchange between the layers. To do so, the mass
conservation equations for each layer are advanced in
time and the velocities are then computed from the
height fields assuming PG dynamics (Rayleigh friction
was used for simplicity). We selected rather small forc-
ing amplitudes to prevent surfacing of the layers so that
the solutions are quasi linear and remain close to the
regime of the previous analytical calculations. When no
wind forcing is applied, the solution is internal, so that
a two-layer case (with a shallow upper layer) becomes
equivalent to a 1 -layer model. We started experimenting1

2

with such a model and found that we could never re-
produce an oscillatory solution. Although it is possible
in principle to cause an instability of a different nature
through the divergence of the mean flow, the last term
in (2) already discussed, its growth rate O(1 cycle/16
years) is too small and does not exceed the critical value
imposed by the horizontal mixing. The next step was
then to add an intermediate layer, necessary for baro-
clinic instability to occur, as recalled previously. With
this 2 -layer configuration, we managed to reproduce1

2

unsteady behavior with typical variability periods
around 25 yr. The important point that we want to stress
lies with this fundamental difference between 1 - and1

2

2 -layer models regarding the variability under constant1
2

flux: while the 1 -layer model never induced any vari-1
2

ability after a few hundred years of integration, the 2 -1
2

layer model driven by exactly the same forcing within
the same geometry exhibited irregular decadal fluctu-
ations of significant amplitudes over thousands of years.
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FIG. 9. The growth rates inferred from a 20-year integration after
a switch to constant flux and an addition of a small (0.018C) tem-
perature perturbation of the form sin(4x) 3 sin(y) (LR configuration).
Positive growth rates between 1 and 2 cycle/year stand out in the
northwest quadrant. The contour interval is 0.3 cycle/year.

rate associated with large friction coefficient at a given wavenumber.
(d) for different values of the upper-layer meridional velocity (1, 2,
3, and 4 cm s21). All other velocity components are zero. The friction
coefficient is set at 105 m2 s21. The growth rate increases monoton-
ically with the shear at a given wavenumber.

FIG. 8. The growth rate (cycle/year) in the three-layer model (solid
line) as a function of wavenumber scaled by the inverse Rossby radius
of deformation ( H )1/2/ f. This must be compared with the inverseg93
timescale associated with horizontal diffusion (dashed line). Common
parameter values are h1 5 100 m, h2 5 200 m, and h3 5 4200 m.
(a) LR case: U1 5 1.5 cm s21, V1 5 4.5 cm s21, U2 5 0, V2 5 1.5
cm s21, 5 0.9 3 1022 m s22, 5 1.8 3 1022 m s22. (b) HR case:g9 g93 1

U1 5 2.8 cm s21, V1 5 21.2 cm s21, U2 5 1.9 cm s21, V2 5 20.5
cm s21, 5 0.8 3 1022 m s22, 5 0.84 3 1022 m s22. (c) Theg9 g93 1

LR case for different values of the Laplacian friction coefficient (2.6
3 105, 5.1 3 105, 7.6 3 105, 106 m2 s21). Growth rate variations
with respect to the friction coefficient is monotonic with small growth

The results of these numerical experiments again sup-
port our proposal that long-wave baroclinic instability
drives the decadal variability in ocean models forced by
quasi-steady surface buoyancy fluxes.

4. A coupled ocean–atmosphere box model

Given, first, that the ocean model is observed to os-
cillate on interdecadal timescales under constant heat
flux and, second, that the driving of the oscillation is
linked to the instability of the western boundary current
region, we propose to go a step further in discussing
the implications of this mechanism for coupled ocean–
atmosphere models. The coupled model study of Del-
worth et al. (1993) shows variability on a 50-yr time-
scale whose origin is associated with variations in the
intensity of the THC, resulting in western-intensified
large-scale SST anomalies that bear encouraging simi-
larities with oceanic observations. Indeed, Greatbatch
and Zhang (1995) and Greatbatch and Peterson (1996)
made the case that what Delworth et al. saw in their
model was oceanically driven with atmospheric pertur-
bations following the oceanic perturbations generated
by a mechanism similar to what is found in coarse-
resolution ocean-only models. Intermediate in com-
plexity, Chen and Ghil’s (1996) study confirmed that
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FIG. 10. The geometry of the four-box ocean–atmosphere model.

the oscillations persist almost unaltered in the situation
of an ocean model coupled to an atmospheric EBM. The
objective pursued in this section is to use our knowledge
of the phase relations between the oceanic meridional
temperature gradient and the overturning of the THC to
explore, through a coupled ocean–atmosphere box mod-
el, the conditions under which what has been observed
in the ocean model can persist with an atmosphere over-
head. Of course, the box models have no quantitative
ambitions but allow instead to account for interactions
of large-scale feedbacks that may be pursued later in
GCMs. This particular box model has already been con-
sidered by Marotzke and Stone (1995), who used it to
discuss the stability of equilibrium solutions and the
proper way of making flux corrections that preserve the
correct sensitivity of model climates. The emphasis here
is not on the equilibrium solutions but on oscillatory
states and on the dynamical choices that allow them.

Consider then the situation in Fig. 10, where two
atmospheric boxes are coupled to two oceanic boxes.
The atmospheric boxes exchange heat externally
through incident solar flux QS and infrared back radi-
ation flux QL to outer space. We assume that the heat
flux QAO between ocean and atmospheric boxes is equal
to l(TA 2 T), that is, proportional to the difference
between ocean and atmosphere temperatures. The char-
acteristic response time of the atmosphere to an oceanic
thermal anomaly is rCph/l, ratio of atmospheric thermal
inertia to the coupling coefficient. While a value of 40
W m22 K21 for the coupling coefficient is customary in
ocean modeling (following Haney 1971), Seager et al.
(1995) have suggested that this is too large and that
values of 15 W m22 K21 or less are more appropriate.
With such values, a height of the tropopause, h 5 10
km, and a heat capacity (rCp)A 5 103 J m23 K21, the
response time of the atmosphere turns out to be of the
order of one week, so small compared to the charac-
teristic oceanic interdecadal timescales that it is an ex-

cellent approximation to assume that the atmosphere is
always in equilibrium balance with its fluxes. This as-
sumption is likely to be robust against any known un-
certainties in the coupling coefficient l, so that for each
of the two atmospheric box i we write

2 2 1 KA( 2 ) 5 0,i i i j iQ Q Q T TS L AO A A (4)

with j 5 3 2 i and where KA, the turbulent heat diffusion
coefficient (in W m22 K21), parameterizes the turbulent
exchange by the large-scale atmospheric eddies. The
heat conservation equation for the oceanic box i is

i (rC )]T p 0i j i(rC h) 5 Q 1 c(T 2 T )p 0 AO]t Ai

j i1 K (T 2 T ), (5)0

where Ai is the horizontal area of box i, c (m3 s21) and
K0 (W m22 K21) are, respectively, the THC overturning
strength and the oceanic heat diffusivity, the two pro-
cesses that strive to homogenize the heat content be-
tween the two oceanic boxes.

Since our main interest is not in the mean state but
in the interdecadal oscillations, we assume, in the fol-
lowing, a known mean state and concentrate our atten-
tion on the variability of the meridional temperature
differences, respectively x 5 T 1 2 T 2 for the ocean and
y 5 2 for the atmosphere. The choice of a time-1 2T TA A

scale t (51 yr) allows us to rewrite Eqs. (4) and (5)
for the temperature differences as

2Q 2 By 2 l(y 2 x) 2 2K y 5 0 (6)S A

and

ẋ 5 al(y 2 x) 2 2cx 2 2aK x, (7)0

where 2QS is the difference of solar flux between the
tropical and polar box, the infrared flux QL has been
linearized around a mean state as A 1 BTA, a is
t /(rCph)o, and c is now scaled by hAi/t (we have also
assumed for simplicity equal areas for the two boxes).
From (6), one obtains immediately

lx 1 2QSy 5 , (8)
l 1 B 1 2KA

showing that the atmosphere temperature anomalies de-
pend linearly on oceanic temperature anomalies, being
reduced by a factor l/(l 1 B 1 2KA), which illustrates
the dissipative roles of large-scale atmospheric turbu-
lence and infrared back radiation. Values of B and KA

are indeed significantly smaller than l, yielding a re-
duction of atmospheric anomalies of about 10% com-
pared to the oceanic anomalies. The ocean–atmosphere
heat flux difference between the boxes DQAO can then
be expressed entirely in terms of the oceanic variables
x as

l
DQ 5 [2Q 2 x(B 1 2K )]. (9)AO S Al 1 B 1 2KA

Quite naturally the flux driving the ocean is made of
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two parts, a constant part that is slightly reduced com-
pared to the solar flux at the top of the atmosphere and
a variable part that summarizes the dissipative effects
of atmospheric turbulence and infrared back radiation
to damp the oceanic anomalies. When y is eliminated
in (7), a single equation for x is obtained:

2alQSẋ 5 2 2cx 2 dx, (10)
l 1 B 1 2KA

where the last term of this equation d is

B 1 2KAd 5 a 2K 1 l .0[ ]l 1 B 1 2KA

The parameter d summarizes the dissipation of the
oceanic temperature anomalies through both oceanic
and atmospheric eddies and infrared back radiation.
Marotzke and Stone’s values of B and KA of 1.7 and
1.3 W m22 K21, respectively, induce a damping time-
scale of about 15 yr, showing the weakness of the tem-
perature dissipation that the ocean box sees. Remarkably
enough, each of the three contributors to the dissipation
are observed to have the same order of magnitude1 in
the present state of the climate system. Linearizing (10),
the sought after thermodynamic equation for the devi-
ation x9 from the temporal mean state (denoted by an
upper bar) is

ẋ9 5 22xc9 2 dx9. (11)

Consistent with the remark of HCW that in the nu-
merical experiments x9/x K c9/c , the term cx9 has been
neglected. It would be desirable to have a box model
that would correctly represent both the mean and the
time variable part, but unfortunately, we have not yet
been able to do this and therefore leave this assumption
as a necessary adjustment of the box model to the 3D
model results. We take the mean as obeying these as-
sumptions and restrict our focus to a discussion of the
temporal variability around a prescribed mean state.
This difficulty should not be too surprising in view of
the observation of Winton (1996) that interdecadal os-
cillations do not occur in 2D models.

To close the system we need another equation for the
dynamics. Originating from Stommel’s (1961) study, the
box models that have attempted to describe the mean
state usually assume a linear diagnostic relation between
the overturning and the meridional density gradient. As
shown previously, the observed behavior of the 3D
models at interdecadal timescales shows that a time lag
exists between the overturning and the interior merid-
ional temperature gradient so that the relation between
the overturning and the density gradient becomes prog-
nostic (HCW):

1 Oceanic mesoscale diffusivity observed to be O(103 m2 s21) trans-
lates to a heat conductivity 103 3 (rcph)o/A of 1 W m22 K21 for an
area A of 2000 km by 2000 km.

5 Kx9 1 mc9 2 gc93.ċ9 (12)

The second term that has been added on the rhs of
(12) represents, in a rather ad hoc way, the linear growth
rate due to baroclinic instability in the western boundary
current region, while the last is a saturation amplitude
limiting term2 that drives the system back to stability at
large amplitudes. The combination of Eq. (11) and (12)
forms a dynamical system in the plane of the two active
variables y9–x9 that we argue produces the qualitative
physics of interdecadal oscillations in the coupled
ocean–atmosphere system. We assume that K and x are
given and study this simple system as a function of the
dissipation d (typically much smaller than 1) and of the
overall linear growth rate m of the instabilities. The last
parameter g is simply there to parameterize the stabiliz-
ing effect of the perturbations at large amplitudes.

The Poincaré–Bendixon theorem (see, e.g., Nayfeh
and Balachandran 1995) indicates that a necessary con-
dition for the existence of periodic solutions is that the
divergence takes both signs in the (x9, c9) plane:

]ẋ9 ]ċ9
21 5 m 2 d 2 3gc9 .

]x9 ]c9

So that periodic solutions can exist only if m is greater
than d. Now when the product md is smaller than unity,
there is no mean state other than zero in these pertur-
bations equations, a desirable situation since we study
deviations from the mean. The linear stability properties
near the origin can be studied assuming perturbations
varying as est and we obtain the eigenvalues equation

s2 1 s(d 2 m) 1 2 md 5 02v0

in which the notation v0 5 (2Kx)1/2 introduces the os-
cillation frequency of the system when m and d are zero.
When d 1 m , 2v0, a condition satisfied in the weakly
dissipative, weakly unstable case that we study, it is
readily seen that m must be larger than d for the origin
to be unstable. In this case the roots have an imaginary
part so that the origin is a spiral source. A finite-am-
plitude limit cycle appears and Hopf bifurcation occurs
in this parameter range of small dissipation as m be-
comes larger than d. As the state system separates from
the origin, the gc93 limiting term becomes important
and brings the system back toward the origin. Choosing
a mean-state meridional temperature contrast x of 108C,
l 5 15 W m22 K21, B 5 1.7 W m22 K21, KA 5 1.3 W
m22 K21, and an oceanic turbulent diffusivity of 103 m2

s21 leads to an overall coefficient of dissipation d 5 6.8
3 1022 yr21. Once the mean state is chosen, the constant
K fixes the period. The amplitude of the oscillation is
plotted on Fig. 11c as m increases from zero while keep-
ing all other parameters constant. The familiar m be-Ï

2 The precise form of this last term is at this point arbitrary and
other alternatives exist such as 2gx2c, in which case the dynamical
system would be a Van der Pol oscillator in the limit d → 0.
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FIG. 11. Results of the ocean–atmosphere four box model for the
following conditions above critical: m 5 0.1, d 5 6.8 3 1022, g 5
1305. (a) Oceanic (solid) and atmospheric (dashed) temperature
anomalies as a function of time. (b) The limit cycle in the phase
plane of meridional temperature difference and overturning stream-
function. (c) Bifurcation diagram of the amplitudes of the oscillations
against the growth rate of baroclinic instability.

havior indicates that a genuine Hopf bifurcation occurs
at m 5 d. With the above parameters, the limit cycle of
the solution is shown in Figs. 11a and 11b for m 5 0.1
yr21. A small initial thermal anomaly of 0.018C grows
to reach a limit cycle over several oscillation periods.
Such values of m for the box model represent growth
rates averaged over the 3D domain in the numerical
experiments, and it is much less than what baroclinic

instability can produce locally (that was seen to be in
the range of one cycle per year). It is this low value of
the overall growth rate3 needed to sustain a finite-am-
plitude oscillation in the box model that gives us con-
fidence that the mechanism that we propose might play
a role in the climate system. The instability mechanism
observed in the northwest quadrant of the idealized
models is the candidate to generate SST anomalies on
a timescale short compared to the cumulative dissipation
effects by atmospheric–oceanic turbulence and infrared
back radiation. On these interdecadal timescales the at-
mosphere reacts passively, enslaved to the periodicities
of the oceanic temperatures (Fig. 11a). The transition
at the bifurcation of this four-box model is very similar
to the transition that has been observed in the numerical
experiments with respect to the horizontal Peclet num-
bers described in section 2a, Fig. 1c. Similarly, Chen
and Ghil conjectured on such a Hopf bifurcation from
the square root dependency of the THC amplitude in
their numerical model when the atmospheric diffusivity
KA and the coupling coefficient l were varied. The pre-
sent four-box model shows that the transition from a
steady to an oscillating regime depends ultimately from
a single parameter d that integrates the various damping
processes of temperature anomalies, atmospheric and
oceanic turbulence, infrared back radiation, and air–sea
coupling coefficients. The decrease of either of l, KA,
or KO coefficients lowers the overall dissipation param-
eter d. When d is below the growth rate m of the large-
scale baroclinically unstable modes of the THC circu-
lation, spontaneous oscillations emerge. What has been
added to Chen and Ghil’s picture is that the properties
of the limit cycle are governed by the instability of the
mean state of the THC as measured by this instability
parameter m and by the dissipation as measured by this
parameter d.

5. Concluding remarks

The present analysis of coarse-resolution ocean mod-
els suggests that, in the real ocean, western boundary
current regions may be baroclinically unstable at scales
beyond the Rossby radius and drive interdecadal oscil-
lations. In ocean models driven by constant buoyancy
fluxes with sufficiently low subgrid-scale diffusivity,
phase lags appear (i) between temperature and pressure
in the horizontal direction and (ii) between temperatures
at different depths. Such phase lags are precisely what
is required to produce downgradient eddy heat fluxes
under nearly geostrophic dynamics. These fluxes release
the mean potential energy in the outflow regions of the
surface western boundary current. We associate this
powerful energy source to the wavemaker of the inter-

3 With the value of dissipation provided by the box model, the
critical amplification factor d21 is about 15 yr.
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decadal oscillations. Excited by this source, surface-
intensified potential vorticity waves of interdecadal pe-
riod appear in the more stable interior. We explored a
nondivergent limit of large-scale mean flow perturba-
tions that shows that the sense of propagation of these
PV waves relative to the mean flow depends on their
degree of surface trapping. The required underlying po-
tential vorticity gradient is due to the mean temperature
gradient associated with the mean flow and not so much
to b so that these waves are allowed on f planes. With
the help of a three-layer model, analytical baroclinic
instability calculations show that the growth rate of the
unstable perturbations in western boundary current re-
gions is compatible with the stability boundaries that
delineate the presence of oscillations in the numerical
runs with respect to the horizontal diffusivity or the
restoring time constant (for runs with restoring bound-
ary conditions instead of constant flux). Furthermore,
very small temperature perturbations seeded in the nu-
merical models amplify at rates that are comparable with
those computed from the three-layer model. To decide
whether such a process is at work in complex coupled
GCM simulations, we suggest using the standard di-
agnostic tools that have been used in the past to identify
the energy sources of geostrophic turbulence, namely,
observations of downgradient eddy heat transport, of
vertical phase lags of temperature (density) anomalies,
and of periodic conversion from mean potential energy.
Another way, of course, is to test the sensitivity of the
observed variability to a reduction of lateral diffusivity
or air–sea coupling coefficient. We have advanced the
conjecture from the results of an idealized ocean–at-
mosphere box model that these free oscillations, gen-
erated through an instability process in the ocean (the
high heat capacity fluid), may easily force oscillations
in the atmosphere (the low heat capacity fluid). It ap-
pears that the present levels of turbulent eddy activities
in both fluids (whose effect is to damp the oscillations)
are consistent (sufficiently low) with a persistence of
the oscillations. Although we hope that we have de-
scribed the processes in a convincing way at the large
scale, we believe that the decisive step will be to show
that similar physics persists when the turbulence at the
Rossby radius of deformation is explicitly resolved
(Spall 1996). We know that such turbulence has a role
in the ocean that goes far beyond what a simple param-
eterization through a diffusion law can produce. A fur-
ther complexity concerns the presence of bottom to-
pography: Winton (1997) observes that its inclusion has
a damping effect on interdecadal oscillations. We sug-
gest that the geography of the marginal stability bound-
aries of the process proposed herein is probably altered.

Similarly nonlinear interactions of unstable waves
and zonal flows in the atmosphere cannot be excluded
as a source of low-frequency variability of their own as
numerical experiments (James and James 1989; James
et al. 1994) or thermally driven experiments in rotating
annulus geometries (Fruh and Read 1997) tend to in-

dicate. There are indeed some studies that take such
low-frequency atmospheric variability as granted to pro-
pose that the interdecadal oceanic response amounts to
a simple integration of atmospheric white noise (Fran-
kignoul et al. 1997).

Of course, there are several other mechanisms that
have been put forward to rationalize the presence of
interdecadal variability. Weaver et al. (1993) have em-
phasized that such variability can exist under mixed
boundary conditions if the E2P flux has sufficient am-
plitude. In the context of the present study, this may be
understood from the viewpoint that, if the E2P ampli-
tudes are large enough, buoyancy anomalies could be
generated through an instability process for salinity sim-
ilar to that we have discussed for temperature. Equally
important will be to judge the efficiency of the present
mechanism when mechanical forcing at the air–sea in-
terface is included. Strong additional feedbacks exist,
either local as between the oceanic mixed layer and the
wind stress and/or remote as between the western
boundary current transport and the wind stress curl.
Such processes have been considered initially by Bjer-
knes (1964) from analysis of observations and extended
more recently by Latif and Barnett (1994) from analysis
of coupled GCMs. We feel confident that the mechanism
that we have identified in our idealized ocean models
might play a role in more realistic contexts (see, e.g.,
Capotondi and Holland 1997).
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