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ABSTRACT

A four-box model of the ocean–atmosphere is constructed that exhibits self-sustained oscillations in the regime
of decadal to interdecadal periods found in oceanic general circulation models under certain boundary conditions.
The oscillations are assumed to be caused by a type of baroclinic instability that relies on the store of available
potential energy in the ocean. To represent this process in a low-order model, the authors propose Landau’s
equation to govern the evolution of the overturning branch of the oceanic circulation. The domains of the unstable
oscillations are found from linear stability analysis, and the nonlinear regimes are explored numerically. On
these long timescales the atmospheric temperatures follow the oceanic temperatures. If the atmospheric tem-
peratures are forced to be constant, the oscillations become strongly damped and disappear. The implications
of the simple physics of this model for the decadal oscillations observed in more complex two- or three-
dimensional GCMs are discussed.

1. Introduction

The North Atlantic oscillation (NAO) is the best ex-
ample of the existence of climate variability on the de-
cadal timescale (Hurrell and van Loon 1997). The good
correlation between the strength of the westerlies and
the large-scale sea surface temperature (SST) anomalies
in the North Atlantic shows that both the atmosphere
and ocean are active in the oscillations and the basic
question, unanswered so far, is whether the decadal
modulation of the NAO is an internal mode of the at-
mosphere with the ocean reacting passively, the con-
verse, or neither (i.e., intrinsically coupled modes). Be-
cause decadal timescales are in the range of periods of
free oceanic waves (baroclinic Rossby waves suitably
modified to take into account the existence of an un-
derlying mean circulation), it is likely that the ocean
plays a central role. Indeed surface observations in the
North Atlantic suggest enhanced variability for quasi-
decadal and 40–60-yr periods (Deser and Blackmon
1993; Kushnir 1994), in which the ocean circulation
contributes actively; Sutton and Allen (1997) show the
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coherent propagation of SST anomalies along the Gulf
Stream and North Atlantic Current paths across the basin
on decadal timescales, while Delworth and Mann (2000)
discuss the role of the thermohaline circulation in the
multidecadal oscillations found over the last 300 yr of
reconstruced surface temperatures from proxy data
(Mann et al. 1998).

Over the last 10 yr, numerous simulations of the large-
scale ocean circulation under boundary conditions of
given flux at the air–sea interface, for at least one of
the temperature or salinity variables, show unequivo-
cally that decadal oscillations are generic features of the
oceanic model response (Cai et al. 1995; Capotondi and
Holland 1997; Greatbatch and Peterson 1996; Great-
batch and Zhang 1995; Huang and Chou 1994; Huck et
al. 1999a, hereinafter HCW; Weaver and Sarachik 1991;
Weaver et al. 1993; Winton 1996). As the diffusion or
surface flux sensitivity to SST are sufficiently lowered
(Chen and Ghil 1996; Colin de Verdière and Huck 1999,
hereinafter CVH), they appear spontaneously in the
form of large-scale surface-intensified thermal anoma-
lies of a few degrees. They are more intensified in the
northern part of basins and are associated with fluctu-
ations in the western boundary current transport and
global overturning of several Sverdrups. CVH suggested
that the cause of these oscillations is the baroclinic in-
stability of the mean state in the region of strongest
surface heat losses. These multidecadal modes may re-
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semble the observed mode, as well as the Geophysical
Fluid Dynamics Laboratory R15 coupled model oscil-
lation (Greatbatch and Zhang 1995). Although a realistic
North Atlantic configuration and forcing may or may
not oscillate under constant flux and then require at-
mospheric stochastic forcing (Delworth and Greatbatch
2000; Griffies and Tziperman 1995), the ultimate pattern
and period are set by the ocean circulation and require
an understanding per se.

When the oscillations are nearly monochromatic, two
variables are necessary for the existence of the oscil-
latory states. We need then to derive model equations
for these two variables that may reproduce the physics
present in models of higher complexity. Stommel (1961)
pioneered this approach to show that a two-box ocean
model with overturning proportional to density differ-
ences between the boxes could exhibit multiple steady
states provided that temperature and salinity were re-
stored to surface values with different time constants.
This suggestion of the existence of multiple states in
ocean general circulation model (OCGM) and box mod-
els of increased complexities was explored by Bryan
(1986), Marotzke (1990), Weaver et al. (1993), Mar-
otzke and Willebrand (1991), and many others in the
context of mixed boundary conditions (i.e., restoring
the temperature and flux on salinity).

Decadal oscillations were first observed in such sim-
ulations by Weaver and Sarachik (1991), who suggested
an advective mechanism. However, a fluid with two
components of state is not necessary as fixed flux ex-
periments with either salinity (Huang and Chou 1994)
or temperature alone (Greatbatch and Peterson 1996;
Greatbatch and Zhang 1995; HCW) (demonstrated
later). Many authors used 2D OGCMs and none reported
decadal oscillations (see Winton 1996) until recently
(Drbohlav and Jin 1998). Prior to this last study, the
dynamics used in these models were roughly speaking
similar to those used by Stommel with friction (acting
on meridional velocity) balancing the meridional pres-
sure gradient with ad hoc coefficients to take into ac-
count some effects of the rotation. Realizing that the
meridional circulation is not in equilibrium with the
density field in the decadal oscillations observed in 3D
models, Drbohlav and Jin turned to unsteady dynamics
and let meridional accelerations respond to meridional
pressure gradients. We will point out that the long-pe-
riod oscillations that they obtain have very different
physics from what happens in three dimensions.

Ruddick and Zhang (1996) revisited Stommel’s box
model and added some new features such as a nonlinear
dependence of the overturning with density contrast and
a temperature-dependent hydrological cycle, but they
concluded that the model was unable to oscillate. Grif-
fies and Tziperman (1995) proposed another box ocean
model adding a separation between thermocline and
abyssal waters to Stommel’s original formulation. They
showed the existence of a damped oscillatory mode
about a thermally dominant state and proposed the idea

that white noise atmospheric forcing of such a mode
could be responsible for the variability found in the
coupled climate model of Delworth et al. (1993). Even
more ambitious box models have been put forward by
Birchfield (1989)—coupling an energy balance model
(EBM) of the atmosphere to a three-box ocean with
active temperature and salinity components. He recov-
ered Stommel’s thermally and salinity-dominant states
and discovered the existence of amplified century-long
oscillations when the evaporation was sufficiently
strong. This oscillatory state was transient as the system
showed abrupt bifurcations to the salinity-dominant
steady state. Welander (1982) was very inventive in the
construction of simple fluid oscillators. He proposed one
in 1982 made of a surface box that relaxed both values
of T and S to prescribed values on different timescales
and mixed to a large reservoir whenever surface density
exceeded the density of the reservoir. These last ex-
amples need two components, T and S, to work and so
cannot be directly relevant to the physics of one variable
decadal oscillation, which is the subject of the present
paper.

To summarize what has been done so far, it seems
therefore that there is a need for a box model that would
allow self-sustained oscillations in the regime of inter-
decadal periods and that does not require a two-com-
ponent oceanic fluid (with different boundary conditions
for temperature and salinity), because OGCMs oscillate
with a single component fluid. Given the general com-
plexity of GCMs, it is necessary to test ideas with sim-
pler analogs that have a limited number of degrees of
freedom and allow one to go up and down the scale of
complexity with added focus on specific processes,
whose physical understanding are prerequisites for cli-
mate predictability studies. Steps in this direction for
decadal oscillations were made by CVH, who suggested,
from a study of the linear perturbations of a four-box
ocean–atmosphere model with heat exchanges only, that
the perturbations could indeed oscillate provided 1) the
existence of a phase lag between the overturning and
the equator-to-pole temperature contrast and 2) an in-
stability process sufficiently active to overcome the sta-
bilizing effect of the diffusion. The above phase lag is
indeed an observed feature in OGCM simulations
(Greatbatch and Peterson 1996; HCW), and a number
of supporting elements for the presence of an active
baroclinic instability in OGCM simulations were
brought forward by CVH. There was, however, a major
hypothesis in their perturbations equations that neglect-
ed the advection of temperature anomalies by the mean
flow. Although this damping term was shown to be small
in an analysis of OGCMs simulations (HCW), the model
could not be considered a complete physical analog of
OGCM oscillations.

The objective of the present study is to reject CVH’s
hypothesis and bring an answer to this problem. We
propose a 2 degree of freedom dynamical system that
oscillates on decadal periods and ultimately rests on
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plausible physical grounds. The evolution of tempera-
ture contrast obeys a heat transport equation identical
with Stommel’s (1961) formulation, but the equation for
the overturning is different; its rate of change is made
proportional to the product of the overturning itself and
a measure of the available potential energy in the ocean.
A frictional term is added to stabilize the system at large
amplitudes. The equation is derived after an analysis in
section 4 that demonstrates that the choices are severely
limited if self-sustained oscillations are to exist under
the constraints of a fixed external heat flux.

Section 2 recalls the salient features of the interde-
cadal oscillations in an OGCM coupled to a simple at-
mospheric energy balance model. In section 3, we dis-
cuss zonally averaged models, in particular we show
that Drbohlav and Jin’s (1998) two-dimensional oscil-
lations have very special physics that do not qualify as
good analogs of 3D oceanic oscillations. The solutions
of the proposed box model are analyzed in sections 4
and 5; the stability analysis of the fixed points is per-
formed and the properties of the oscillations in the non-
linear regime are found numerically. Some implications
of these results for the decadal oscillations found in
OGCMs are discussed in section 6; the detailed com-
parison with the results of the three-dimensional ocean
model coupled to a one-layer energy balance model of
the atmosphere (section 2) shows encouraging support
for the box model parameterization at small amplitudes,
but highlights significant differences in the nonlinear
regime.

2. Oscillations in a three-dimensional coupled
model

In order to provide a short description of the oscil-
lations of the thermohaline circulation in an idealized
coupled configuration, we set up a three-dimensional
ocean model coupled to an atmospheric energy balance
model. The ocean model is described in Huck et al.
(1999b). The dynamical part is based on the planetary
geostrophic equations with Laplacian horizontal vis-
cosity (AH 5 105 m2 s21) and no-slip boundary con-
ditions, but no vertical viscosity (which would be neg-
ligible given the large horizontal diffusivity necessary
to resolve the Munk boundary layer), no bottom friction
or wind forcing (such that the barotropic mode in a flat-
bottom basin is zero). The thermodynamical part is lim-
ited to the equation for temperature with a linear equa-
tion of state (the thermal expansion a 5 2 3 1024 K21),
including advection, diffusion (horizontal and vertical
diffusivities are constant, respectively, 1000 and 1024

m2 s21), convection (as described by Rahmstorf 1993),
and surface forcing. The equations are discretized on
an Arakawa B grid in Cartesian coordinates, for a mid-
latitude b-plane ocean basin centered at 408N, extending
from 208 to 608N, 5120 km wide, and 4500 m deep.
The resolution is relatively coarse: 160 km horizontally

and 15 levels vertically (respectively, 50 3 3, 100, 150,
200, 250, 300, 350, 400, 450, 500, 550 3 3 m thick).

The atmospheric EBM is a one-layer atmosphere
(heat capacity is 107 J m22 K21), absorbing incoming
solar shortwave radiation at the rate of 157 W m22 3
cos[p(latitude 2 208)/408], such that the mean heating
(cooling) is 100 W m22 in the southern (northern) half
of the domain, and radiating infrared to space as a linear
function of its temperature (B 5 1.7 W m22 K21). The
horizontal heat transport is parameterized as a diffusion
law with a constant coefficient of 0.5 3 106 m2 s21.
The horizontal grid is identical to the ocean’s, while the
Euler time integration requires a much shorter time step
(1 h). The exchange of heat between the atmosphere
and the ocean is proportional to the difference between
the atmospheric and oceanic surface temperature (ex-
change coefficient of 15 W m22 K21). Geometry, pa-
rameterizations, and parameters are chosen to be as sim-
ilar as possible to the box model analyzed later (sections
4 and 5).

The coupled integration spans 6000 yr (the initial
temperature field is uniformly 58C), starting with large
amplitude oscillations that slowly weaken and settle into
constant amplitude. The mean overturning (Fig. 1) is
then 10 Sv (1 Sverdrup 5 106 m3 s21), with a standard
deviation of 0.5 Sv, realizing a mean poleward heat
transport close to 0.5 PW (1 PW 5 1015 W). Meanwhile,
the temperature difference between the upper 850-m
southern and northern half ocean boxes varies by 0.18
around 3.78C. The oscillation period is then very close
to 20 yr. Within such a small amplitude regime, the
oscillations are very smooth and regular (Fig. 2), but
not perfectly sinusoidal though. The meridional over-
turning rises very linearly on a 14-yr time-scale but
drops more sharply within the next 5 yr. Although not
as asymmetric, the temperature difference between the
upper boxes starts rising 3 yr before the overturning,
peaks 5 yr after it started, and declines more smoothly
for the remaining 12 yr. These asymmetries are stronger
when the amplitudes are larger in the early centuries of
the coupled run; however, in the small amplitude regime
the oscillations behave quasi-linearly.

The variability is concentrated in the northern half of
the basin, especially in the western regions, in the ocean
as well as in the atmosphere (Figs. 3a,c). The standard
deviation of the surface fluxes during the oscillations
remains small in comparison with the time-averaged
values (Fig. 3b), supporting the use of constant flux in
previous experiments (Greatbatch and Zhang 1995;
HCW; CVH). We show different phases of an oscillation
for the zonally averaged temperature and meridional
overturning (Fig. 4). The variability remains localized
in the upper 500 m of the ocean, especially in the north-
ern regions. Temperature anomalies follow closely
changes in the thermohaline circulation, although it is
hard to understand the origin of the oscillations in these
zonally averaged quantities, provided mainly for com-
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FIG. 1. The 3D coupled model climatology: (a) time- and zonally averaged surface heat flux,
(b) overturning (contours every Sverdrup, dashed lines are negative contours), (c) atmospheric
temperature (solid) and SST (dashed), and (d) oceanic stratification (contours every 1 8C).

FIG. 2. Time evolution of the maximum overturning and the south–
north temperature contrast in the upper 850 m (the box model–type
variables) for the 3D coupled PGL–EBM model oscillations. Note
the slow rise (rapid decline) of the overturning and the opposite
situation for the temperature contrast.

parison with oscillations in 2D models (Drbohlav and
Jin 1998).

The oscillatory behavior has its roots in the phase lag
between overturning and meridional density gradient on
decadal timescales (Fig. 2), because of the adjustment
of the thermohaline circulation through baroclinic plan-
etary waves that propagate across the basin in several

years to decades. However, the source of energy that
sustains the oscillations against dissipation is the long-
wave baroclinic instability of the currents and stratifi-
cation structure in the northwestern region of the do-
main—we refer the reader to previous analysis of the
oscillations in very similar settings for the detailed ar-
guments that lead us to these conclusions (HCW; CVH).

3. Zonally averaged model analog?

Many of the OGCMs that have been run with flux
boundary conditions exhibit decadal oscillations that do
not depend on a two-component (T, S) fluid and the
present single-component (T) model illustrates the bar-
oclinic instability mechanism and the oscillations it trig-
gers in its simplest form. The rather passive role of the
atmosphere on these long timescales, given the choice
of representative parameters of the present climate sys-
tem that we have used, suggests that there is no reason
for the same mechanism not to operate in more complex
coupled ocean–atmosphere circulation models. As in
Landau’s early work on the genesis of the turbulence,
the major difficulty is to derive the equation for the
overturning from the hydrodynamical equations of mo-
tions in zonally averaged models. Past efforts in this
direction include those of Marotzke et al. (1988), Wright
and Stocker (1991), Wright et al. (1995), and Winton
(1996). They derived equations for the overturning in
the spirit of Stommel’s 1961 formulation equilibrating
buoyancy torque and friction. These two-dimensional
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FIG. 3. (a) Time-average (dashed contours) and std dev (solid) of
atmospheric temperature, (b) surface heat flux, (c) and SST. Mean
contours are every 28C for atmospheric temperature and SST, every
10 W m22 for the fluxes.

studies in the latitude–depth plane failed to show de-
cadal oscillations. With overturning increasing with
temperature (or buoyancy) anomalies, it is readily seen
that if for instance the temperature anomaly is larger
than at steady state, the overturning is also larger caus-
ing a larger advective heat transport that damps the ini-
tial temperature anomaly (this will be reexamined in
detail in the next section).

In contrast, Drbohlav and Jin (1998, hereinafter DJ)
have quite recently produced interdecadal oscillations
using a 2D (latitude–depth) ocean model driven by con-
stant flux. The result is puzzling in view of what was
just said and also because we know that the essential
ingredients, baroclinic instability, and planetary waves
are absent in such a geometrical setting. What is then
the nature of the oscillations and instability in their 2D
model and to which extent is this a good analog of the
3D situation? An answer to this question can be pro-
vided by casting their formulation in terms of a two-
layer model supposed for simplicity to have a thin upper-
thermocline layer h compared to the total depth. Only
the baroclinic mode meridional velocity (the velocity
difference between the upper and lower layer) is active
because the barotropic mode is absent in such a rigid-

lid 2D model. According to DJ’s dynamics, the equa-
tions for the variables h and y can be cast as

Dy ]h
5 2g9« 1 F, (1a)

Dt ]y

]h ]
1 (hy) 5 Q, (1b)

]t ]y

where g9 is the reduced gravity and « a small coefficient
used in DJ’s semiempirical formulation, Q is the mass
flux between the layers that parameterizes heating and
cooling, and F represents frictional effects. The novelty
here is the presence of inertia in (1a) that introduces a
phase lag between the density field and the overturning,
which permits oscillations. The small coefficient « is
there to parameterize effects of the earth’s rotation.

Suppose that a mean state distribution of velocity and
thickness (V, H) has been found to equilibrate a partic-
ular (but constant in time) heat flux distribution. The
stability of that particular state can then be obtained
from the linearized perturbation equations:

]y9 ]h9
5 2g9« , (2a)

]t ]y

]h9 ]
1 (Hy9 1 h9V ) 5 0. (2b)

]t ]y

The variables h9 and y9 are the departures from the
mean state and nonlinear and frictional terms have been
omitted in (2a) because their presence is not important
for the present argument. Eliminating y9 between (2a)
and (2b) yields

2] ] ] ] h9 dV ]h9
21 V h9 2 c 1 5 0. (3)

21 2]t ]t ]y ]y dy ]t

The parameter c is simply (g9H«)1/2, the phase ve-
locity of the waves that travel along the interface in the
absence of a mean flow. Equation (3) is in fact telling
us that the waves have the structure of internal gravity
waves. Because they are slowed down enormously by
the introduction of the « factor, they enter the range of
interdecadal oscillations. Estimating g9 as the expansion
coefficient (2 3 1024 K21) times the thermal contrast
between upper and lower layer (68C), and H 5 500 m,
the true internal gravity wave speed (g9H)1/2 is 2.5 m
s21. Using DJ value for « (1.25 3 1025), the wave speed
drops to 0.9 cm s21. Since structures of half a wave-
length typically appear in their 6000-km domain, the
estimated period of free waves for 12 000-km wave-
length is 44 yr, well into the range of interdecadal scales.
Of course, the presence of a mean flow modifies this.
When the mean flow is constant, the modification re-
duces to a Doppler shift that alters the real wave speeds.
More significantly, the last term in (3) shows that when
the mean flow is convergent (dV/dy , 0), a linear in-
stability arises whose growth rate is just controlled by
the value of the convergence—to see this, balance the
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FIG. 4. Meridional overturning anomaly and zonally averaged temperature anomaly for various
phases of the oscillation in the 3D coupled model (10 snapshots every 2 yr for the 20-yr
oscillation).

first and last term in (3). Consider regions of heat losses
(Q , 0), where the mean heat (mass) transport
(]/]y)(HV) is convergent. Suppose that the mean depth
is perturbed to a slightly larger value (uniformly so that
velocities are unchanged), then more heat is brought by
the mean flow than can be extracted by the constant
forcing and the layer continues to deepen. This is a
simple mechanism that could perhaps account for the
slow instability witnessed by DJ. Such an effect was
mentioned in CVH but was judged to be weak when
compared to baroclinic instability in interpreting 3D
simulations. It seems therefore that both the oscillations
and the instabilities of this 2D model have a physical
nature rather different than those observed in OGCMs

and it is difficult to qualify this model as a good physical
analog.

The anomalies of the overturning and zonally aver-
aged temperature for the 3D model discussed previously
(Fig. 4) can be compared with DJ’s. While the basin
geometry is slightly different as well as the forcing
(EBM model vs surface fluxes diagnosed at the end of
a restoring run in DJ), significant differences appear in
the structure of the anomalies in the 2D and 3D models
(in addition to very different oscillation periods, 20 yr
vs 65 yr in DJ). While overturning anomalies are limited
to the northern 108 of the basin in the 3D model and
remain usually of the same sign in the whole basin, DJ’s
simulation show large variations of the overturning at
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FIG. 4. (Continued ) Contours are every 0.25 Sv (0.58C) for the overturning (temperature)
anomalies (dashed contours are negative anomalies).

all depths and latitudes, the structure of the anomaly
being most of the time bipolar. Temperature variations
are intensified in the upper 500 m and in the northern
part of the basin in the 3D model, anomalies being usu-
ally of one sign. In contrast, the 2D temperature anom-
alies often show a sign reversal on the vertical, extend
all the way from the equator to high latitudes from the
surface to 1000 m. Moreover, the phase lag between the
meridional density contrast and overturning anomalies
is not clear in the DJ model.

4. Formulation of a box model analog

Consider the situation in Fig. 5 where two atmo-
spheric boxes are coupled to two oceanic boxes. The
atmospheric boxes exchange heat externally through in-

cident solar flux QS and infrared back radiation flux QL

to outer space. We assume that the heat flux QA0 between
ocean and atmosphere is simply equal to l(TA 2 TO),
the difference between atmospheric and oceanic tem-
peratures. Because the characteristic timescale of re-
sponse of the atmosphere to an oceanic temperature
anomaly that is in the range of days to weeks is small
compared to decadal timescales, it is an excellent as-
sumption to assume that the atmosphere is in energy
balance, with the various fluxes adding to zero:

2 2 1 KA( 2 ) 5 0,i i i j iQ Q Q T TS L A0 A A (4)

where the indices i 5 1, 2 (j 5 3 2 i) refer to the
tropical and polar atmospheric box, respectively. Here
KA is the turbulent eddy heat conductivity that param-
eterizes lateral eddy transport. For the range of tem-
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FIG. 5. The geometry of the four-box ocean–atmosphere model.
Only the variations of the upper thermocline are considered.

perature variations of interest, the Stefan–Boltzmann’s
law can be linearized (Budyko 1969) so that

QL 5 A 1 BTA.

Making this substitution in (4) gives an equation for
y 5 2 , the temperature difference between the1 2T TA A

two atmospheric boxes, in term of x 5 2 the1 2T TO O

temperature difference between the two oceanic boxes:

DQS 2 By 2 l(y 2 x) 2 2KAy 5 0, (5)

where DQS 5 2 is the net differential solar input1 2Q QS S

at the top of the atmosphere. Dependence on absolute
temperature drops out in (5) because we have assumed
for simplicity the same coefficients A and B for each
box for the linearized expression of the infrared flux.
This symmetry condition allows us to derive expres-
sions that depend only on the temperature differential
between the boxes and not on the mean temperature of
the boxes. We are only concerned here with internal
redistributions in the ocean–atmosphere system.

Both y and QA0 the flux driving the oceanic boxes can
then be expressed in terms of x:

lx 1 DQSy 5 and (6)
l 1 B 1 2KA

lDQ l(B 1 2K )S ADQ 5 l(y 2 x) 5 2 x.A0 B 1 l 1 2K B 1 l 1 2KA A

(7)

Atmospheric temperature anomalies follow closely (and
linearly) oceanic temperature anomalies with a ‘‘slope’’
l/(l 1 B 1 2KA) of 0.77 when values of l 5 15 W

m22 K21, B 5 1.7 W m22 K21, and KA 5 1.3 W m22

K21 are inserted. The values of B and KA are those
chosen by Marotzke and Stone (1995) in their study of
the sensitivity of climate models to flux corrections. The
value of l corresponds to those of Seager et al. (1995);
it is well below the threshold beyond which no decadal
oscillations exist in CVH’s OGCM. The ocean–atmo-
sphere heat flux is dominated by the differential of solar
flux, the first term on the rhs of (7) for all reasonable
values of oceanic temperature differences. This occurs
because the box model captures only the largest scales
of spatial variability much larger than the atmospheric
diffusive length scale of the order of 700 km, as dis-
cussed by Marotzke and Pierce (1997). Equation (7)
solves the energy balance of the atmospheric box model
by providing the surface flux in terms of oceanic tem-
peratures only.

Turning our attention to the oceanic compartment,
two processes are included to transport heat meridio-
nally, turbulent eddies akin to those included in the
atmospheric compartment and more importantly the
large-scale thermohaline circulation made possible in
the ocean by the existence of meridional boundaries.
The term ‘‘thermohaline’’ is improper in our context
since fresh water and salt transports are not considered
in this study but we will stick, nevertheless, to this usual
convention.

The heat conservation equation for each oceanic box
is

i rC]T po i j i(rC h) 5 Q 1 c(T 2 T )p 0 A0 O O1 2]t A
0

j i1 K (T 2 T ), (8)0 O O

where h and A (5000 km 3 2000 km) are, respectively,
the depth and area of each box, c is the overturning
stream function (m3 s21), and K0 is the eddy heat con-
ductivity (W m22 K21). Because decadal oscillations
appear as surface intensified phenomena in OGCMs, the
subtropical box will be taken to have a depth h of 1000
m, much less than the depth of the ocean. The polar
box with active convection should have a much greater
depth and connect to deep abyssal boxes, as in HCW.
However, if we want to preserve symmetry conditions
that allow us to focus on temperature differentials only,
we need to have a polar box identical to the subtropical
one. Including explicitly a deep abyssal layer would
allow us to predict mean temperatures as well. However,
the adjustment timescale of the deep ocean is at least
one order of magnitude larger than decadal timescales
and these processes are purposely filtered out. After
introducing a timescale t (51 yr) for the time variable,
and a scale hA/t for c, (8) can be transformed into an
equation for the oceanic temperature difference x be-
tween the tropical and polar box:

ẋ 5 al(y 2 x) 2 2cx 2 2aK0x, (9)

where a 5 t /(rCph)0 is a constant (K m2 W21). The
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FIG. 6. The variables c and x represent, respectively, the oceanic
overturning streamfunction and the meridional oceanic temperature
contrast. The steady-state curves for temperature (solid) and over-
turning (dashed) intersect at fixed points, such as A or B. It is readily
seen that the system perturbed away from B is driven back to B along
either the steady-state temperature curve or the overturning curve.
This is not the case at a point such as A, where the perturbations
along the steady-state temperature curves are unstable. We propose
that the behavior of A-type points is relevant to the existence of
decadal oscillations.

variable y can now be eliminated between (7) and (9)
to yield a single equation for x:

ẋ 5 q 2 2cx 2 dx, (10)

where the driving flux q is (alDQS)/(l 1 B 1 2KA)
and the diffusion d is

2lK lBAa 2K 1 1 ,01 2l 1 B 1 2K l 1 B 1 2KA A

summarizing the cumulative effects of eddy heat trans-
ports in the ocean and in the atmosphere and infrared
back radiation. Lagrangian marker dispersal in the ocean
gives eddy diffusivity estimates in the range of 103 m2

s21 that translates to eddy heat conductivities of 103 3
(rCph)0/L2, where the appropriate length scale L over
which the diffusion process is analyzed, is made equal
to the meridional size of the box. Values for h (L) of 1
km (2000 km), respectively, give K0 ; 1 W m22 K21.
It is readily seen that the three contributors to the dif-
fusion in (10) have the same order of magnitude, giving
an overall diffusion timescale d21 of 23.7 yr. The re-
maining contributor to the heat transport that is needed
to respond to the differential flux q in the steady state
comes from the overturning that adjusts a surface tem-
perature anomaly on a timescale (2c)21 ; 10 yr under
typical ‘‘present day’’ conditions of 15 Sv for the equa-
tor-to-pole mass transport. This is twice as efficient as
the sum of turbulent diffusion and infrared losses.

A dynamical equation must be added to relate the
time rate of change of the overturning and temperature.
There are additional feedbacks caused by variations of
the eddy diffusivities KA and K0 with temperature gra-
dients, but we have decided to concentrate solely upon
the overturning. OGCMs readily provide the overturn-
ing streamfunction in the latitude–depth plane. The
quantity being determined by the zonal pressure gra-
dient, it does not lend itself to easy parameterization in
zonally averaged or box models. Originating with Stom-
mel (1961), numerous studies have appeared that ulti-
mately rest upon a steady-state balance between the
buoyancy torque proportional to x and dissipation pro-
portional to c with no phase lags. The absence of phase
lags may well be justified for very long timescales much
larger than the decadal scales of baroclinic signals but
clearly is inappropriate here, as shown by Greatbatch
and Peterson (1996) and CVH. These studies have
shown the existence of quadratures that must be in-
cluded in lower-order models that aim at reproducing
the behavior of GCMs. Ruddick and Zhang (1996) re-
cently added support to this requirement by proving the
nonoscillatory nature of the original Stommel 1961’s
box model. A generic form of our dynamical predictive
equation for c is therefore

5 f (x, c).ċ

The problem is now to discover the functional de-
pendence f (x, c) that reproduces unstable oscillatory

fixed points that appear under Hopf-type bifurcations
when the diffusion is progressively lowered. The ex-
istence of Hopf bifurcations in OGCMs from a steady
THC regime to an oscillatory one has been shown by
Chen and Ghil (1996) against variations of l and by
CVH against variations of eddy diffusivity. The latter
authors showed that this was made possible, first by an
instability process concentrated in the western boundary
current extension of their oceanic basin (i.e., the regime
of baroclinic instability at scales that are large compared
to the Rossby radius of deformation) and second by the
existence of planetary potential vorticity (PV) modes in
the interior. As will be shown next, relatively simple
and physically plausible forms for f (x, c) allow to re-
cover these 3D effects. It is, of course, illusory to re-
cover the hydrodynamics of oceanic baroclinic insta-
bility in a one-layer, two-box fluid model, but its salient
physical effects can be parameterized. We present the
results voluntarily in an unusual fashion by showing
first how a simple functional dependence for f (x, c)
allows a supercritical Hopf bifurcation of the 2 degree
of freedom dynamical system and later justify from a
physical point of view the necessarily nonunique form
that has been chosen.

Consider the steady-state equation imposed from
(10): x 5 q/(2c 1 d). Any point on this curve (Fig. 6)
in the x–c phase space for which f (x, c) vanishes is a
fixed point of the dynamical system. The largest x
(5q/d) value is obtained when c is zero. In this dif-
fusive state the heat input is balanced entirely by eddy
heat transport and infrared back radiation. A nonzero
overturning requires less meridional temperature dif-
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ference to balance a given surface flux. In the neigh-
borhood of a fixed point of coordinates (x0 . 0, c0 .
0) arbitrary at this point, the linearized equations for
the perturbations are

q
ẋ 5 2 x9 2 2x c9,0x0

] f ] f
ċ 5 x9 1 c9,

]x ]c

in which the f partial derivatives are evaluated at the
fixed point. Exponential solutions elt require the ex-
ponent l to obey

q ] f ] f
2l 1 l 2 1 2x 5 0.01 2x ]c ]x0

The conditions for the fixed point to be a spiral source
(lR . 0, lI ± 0) require

] f q
. , (11a)

]c x0

2
] f 1 q ] f

. 2 . (11b)1 2]x 8x x ]c0 0

Therefore, a weak but necessary condition for oscilla-
tory instability is that both partial derivatives be positive
since q and x0 are positive by definition. This implies
in turn that (]x/]c) f be negative at the fixed point so
that the intersection of the heat curve with the dynamic
curve of equation f (x, c) 5 0 must occur with a negative
slope as sketched in Fig. 6. This surprising conclusion
is opposite to the choices of Stommel’s type of param-
eterizations for which c is an increasing function of x
and provides the key to the existence of unstable os-
cillatory states. There are two other elements that help
to further select a functional form for f. The first is that
we ask the diffusive state to be a fixed point and for
this to be the case f (x, c) must be of the form cg(x, c).
The oceanic box model has then two equilibria, an ad-
vective one with an active meridional thermohaline cir-
culation and a diffusive one in which the heat transport
is carried out entirely by the turbulent eddies. In this
diffusive mode, the ocean heat transport has physical
origins akin to the midlatitude atmospheric heat trans-
port through the ‘‘small-scale’’ baroclinic instability of
a zonal circulation. The second element is that friction
must be active to equilibrate buoyancy torque for large
values of c. The dynamical system is dissipative and
(]ẋ/]x) 1 ( /]c) , 0 at large values of x and c. This]ċ
implies that the curve of equation f (x, c) 5 0 pictured
in Fig. 6 must change slope for large values of c. The
simplest continuous curve with a change of sign in slope
is a parabola and g is then chosen to be of the form:

g(x, c) 5 k(x 2 x*) 2 g(c 2 c*)2.

These considerations lead us to consider as a proto-
type for interdecadal oscillations the following system:

ẋ 5 q 2 2cx 2 dx, (12a)
2ċ 5 k(x 2 x*)c 2 g(c 2 c*) c, (12b)

where k, g, x*, and c* are free parameters. A somewhat
unusual path has been used to ‘‘find Eq. 12b’’ from
properties of its solutions. The nonunique choice for f
is, of course, highly artificial unless a physical inter-
pretation be given. The first term on the rhs of (12b)
tells us that if the north–south temperature contrast ex-
ceeds a given bound, then that term is responsible for
an exponential increase of c. One of the results of the
analysis of OGCMs by CVH is that the driving behind
the interdecadal oscillations is the baroclinic instability
of the mean thermohaline circulation. In that context,
the first term in (12b) mimics that instability when po-
tential energy (the x variable) is available to be con-
verted in kinetic energy (the c variable). Physically a
vertical shear is associated with x trough the thermal
wind equation, so that in agreement with baroclinic in-
stability theory, the growth rate is made proportional to
that vertical shear. Under this process the meridional
circulation is then replenished at a rate controlled by
the available potential energy. Of course, it would also
be possible to add another feedback by allowing en-
hanced turbulent diffusion by small-scale baroclinic ed-
dies for larger x, but we have not considered this process
at the present stage because the importance of oceanic
eddy heat transport has not yet been so clearly confirmed
in OGCMs. The presence of a threshold x* to initiate
exponential growth is not essential but is a matter of
simplicity. If x* is absent, the parabola cuts the heat
curve at a second fixed point. By our previous argu-
ments, that second fixed point (higher c, lower x) is
stable (since the slope of the parabola is positive there)
and the model state is bound to be attracted asymptot-
ically to that sink. Indeed numerous additional equilibria
appear in OGCMs, but mostly in configurations with
two active parameters, temperature and salinity. CVH’s
(temperature only) model results indicate that the ab-
sence of oscillations is not caused by a transition to new
equilibria, but by increased damping effects such as
turbulent diffusion or stiff restoring to a surface tem-
perature distribution. Therefore we use nonzero x* (and
c*) to ensure the existence of a single advective fixed
point that necessarily occurs at x (c) larger (smaller)
than x* (c*). While little alternative choices exist to
parameterize a large-scale baroclinic instability (present
at infinitesimal amplitudes), there is definitely more ar-
bitrariness in the choice of the friction term. Yet the
choice made is the simplest one within the domain of
functions with continuous derivatives. It ensures dissi-
pation of the dynamical system by saturating the am-
plitude of the unstable perturbations. Precisely and only
at the fixed point, buoyancy torque balances the friction
as in Stommel’s (1961).

One might object to the formulation of the friction
term on the basis that equilibrium solutions of OGCMs
tend to have overturning varying linearly with imposed
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surface temperature contrast. The present formulation
with fixed values of x* and c* provides a steady-state
overturning varying as the square root of the atmo-
spheric temperature contrast in place of the linear law.
However, it is clearly unphysical to vary the surface
boundary conditions and keep restoring the same
(x*, c*) state. The proper variation of overturning
against externally imposed temperature contrast must
go along with adequate variations of x* and c*. Con-
sequently, we can use the model only locally in param-
eter space to understand the conditions under which
decadal oscillations appear around a fixed point for giv-
en values of x* and c*.

One last comment is that (12b) is Landau’s equation,
an equation used to describe the transition to turbulence
through hydrodynamic instabilities. Landau used that
equation in its simplest form to show that at a critical
Reynolds number, the system could bifurcate along the
road to turbulence from a laminar flow to a time-de-
pendent periodic one (see Drazin and Reid 1981 for a
review).

5. Stability and oscillatory states

We now proceed to examine in detail the properties
of (12a)–(12b). First of all, in order to have a single
fixed point (in addition to the diffusive one) in the sit-
uation of Fig. 6, the parabola must intersect the c 5 0
axis below the diffusive equilibrium temperature con-
trast q/d and its minimum must be above the heat curve,
requirements for the parameters that translate into

q q g
2, x* , 2 c*. (13)

2c* 1 d d k

These inequalities will be assumed to hold in what
follows and under these conditions the two fixed points
are

q
(x, c) 5 , 01 2d

the diffusive state, while the second ‘‘advective’’ fixed
point is solution of the cubic

k
3 2 22c 1 (d 2 4c*)c 1 2 c* 2 dc* 1 x* c1 2g

k
21 (x*d 2 q) 1 dc* 5 0. (14)

g

At most one real root is solution of (14) under conditions
(13). Instability of the fixed points depends on condition
(11a), which becomes

q
2 k(x 2 x*) , g(c* 2 c)(3c 2 c*). (15)

x

This condition can be quickly recovered by forming
the divergence of (12):

]ẋ ]ċ
1 5 22c 2 d 1 k(x 2 x*)

]x ]c

1 g(c* 2 c)(3c 2 c*). (16)

At a fixed point, 2c 1 d is just q/x and the condition
of a positive divergence is identical with (15). The os-
cillatory nature of the dynamical system depends on
whether the divergence takes both signs in the x–c
plane, a necessary condition known as the Poincaré–
Bendixon theorem. It is immediately fulfilled when the
instability condition (15) is met because (16) shows that
the divergence becomes negative for large values of c
(for a given x), a condition that shows the dissipative
nature of the system. The condition for imaginary ex-
ponentials (11b) is easily obtained from the linear sta-
bility analysis.

In the exploration of parameter space, the values of
x* and c* have been fixed. The parameter k bears upon
the timescale of the oscillations, as can be inferred from
(11b). It is linked to the phase lag that exists in the
ocean between the western boundary current transport
and the interior temperature gradient lag that depends
on the time it takes for a planetary wave to cross the
basin (HCW). Only the friction g and the diffusion d
are varied in the parameter space exploration that is
presented next. Fixed parameter values are k 5 0.1 yr21

K21, c* 5 15 Sv, x* 5 11.715 K, and DQS 5 200 W
m22. The oceanic boxes extend 5000 km (2000 km) in
longitude (latitude) and are 1000 m deep. The real part
of the eigenvalues (i.e., the growth rates) near the dif-
fusive and advective fixed points are shown in Fig. 7
with respect to g and d. The growth rates near the dif-
fusive fixed point are positive (negative) for small
(large) d. With the value of d previously estimated, the
diffusive solution is unstable almost independently of
the value of g. It can also be shown that it is nonos-
cillatory. Since the temperature contrast of the diffusive
solution is much larger than x*, positive c perturbations
are rapidly amplified. The analysis in the neighborhood
of the advective fixed point shows that its stability
boundaries are more complex. For each g there are limits
in d beyond which (14) has either two roots or no root.
Only the domain inside the limits given by (13) has
been explored. First, g must exceed a certain cutoff
value for the fixed point to be unstable for a given d.
Conversely, for g above this cutoff, the fixed point is
stable for sufficiently low and sufficiently high d values.
The former limit is counterintuitive. It comes from the
fact that as d decreases to low values, c increases and
x decreases in a combination that makes the system more
dissipative. At the difference of the diffusive case, larger
temperature contrast and smaller overturning are now
obtained for larger diffusion and friction. In the whole
domain of existence of this fixed point, the perturbation
solutions are oscillatory. Their frequency depends weak-
ly on g and decreases with increasing diffusion, as ex-
pected.
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FIG. 7. The real part of eigenvalues at the advective (diffusive)
fixed points are shown in (a) [(b)] in the d (diffusion), g (friction)
parameter space. The diffusive state is always unstable while for large
g a ‘‘window’’ of d values allows instability of the advective fixed
point. It is in the positive (solid contour) region of (a) that a super-
critical Hopf bifurcation is possible. The contour interval values are
multiplied by 104 in (a). They are, respectively, 7 3 1022 yr21 and
2 3 1022 yr21 for (a) and (b). (The d values are in yr21 and g values
when multiplied by 1025 are in Sv22 yr21.)

FIG. 8. The bifurcation diagram of the temperature oscillations (rms
measure) is shown against g (friction parameter). At gc the system
is unstable and a limit cycle develops (g values multiplied by 1025

are in Sv22 yr21).

It is now possible to turn to the temporal description
of particular solutions. With the diffusion d 5 4.2 3
1022 yr21 previously estimated, and k (50.1 K21 yr21)
typical of the sensitivity observed in OGCMs, Fig. 8
shows the rms amplitudes of the temperature pertur-
bations at large times as functions of g. It is surprising
at first to see the perturbations growing with an increase
in the friction parameter g. This comes from the fact

that as g increases, the distance of the fixed point c0 to
c* diminishes. The square of that distance appears in
the friction parameterization and this effect overrules
the increase in g so that the net friction near the fixed
point decreases. For values of g larger than gc (59.97
3 1024 Sv22 yr21), the fixed point becomes unstable in
an oscillatory manner at a value predicted by the linear
analysis (15). The dependence of amplitudes of the limit
cycle on (g 2 gc)1/2 is the familiar signature of a su-
percritical Hopf bifurcation at gc. Equation (11a) shows
that the critical condition at bifurcation gives ] f /]c
equals q/x0 (51.22/12.02), implying an exponential am-
plification of c in slightly less than 10 yr. We recover
the kind of efficiency measured by the parameter m in
CVH. With values of g only 3.5% above critical, small
perturbations grow over a 2000-yr timescale to finite
amplitudes of 0.228C (0.4 Sv) with oscillations of about
25-yr period around the advective fixed point at 12.038C
(9.47 Sv). The nearly sinusoidal shape and the ampli-
tudes of these oscillations, the phase lag between the
temperature contrast, and the overturning (Fig. 9) all
compare very favorably with those observed in the 3D
model of section 2. The growth rate is much smaller
than the period (23 yr) by almost two orders of mag-
nitude because of the proximity of the bifurcation. Note
again the similarities with the 3D simulation that took
nearly 5000 yr to reach a quasiperiodic state. (Of course,
the initial convergence to the limit cycle can be much
more rapid if the perturbations are stronger.) The tem-
perature perturbations in the atmospheric box are always
in phase with oceanic temperatures (6)—a result that
comes from the weak assumption of low thermal inertia
of the atmosphere at decadal scales. For the parameters
chosen, their amplitudes are about three-quarters of the
oceanic temperatures. Very similar phase and ampli-
tudes were obtained in the coupled 3D model, with the
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FIG. 9. The solutions are shown for a g value 3.5% above critical.
(a) The steady-state curves that apply in this case are shown. The
point of intersection is unstable in the manner of the point A in the
sketch of Fig. 5. (b) The divergence in the x–c space (positive–solid)
along with the position of the diffusive (*) and advective fixed point
(1) is shown. (c) The (scaled) oscillations of temperature (solid) and
overturning (dashed) in the regime of limit cycle amplitudes similar
to those in the coupled 3D model are shown.

rms atmospheric surface temperature reaching in that
case 61% of the rms SST. The surface heat flux differ-
ential applied to the oceanic box is nearly constant at
about 57% of the solar flux differential at the top of the
atmospheric box. While OGCMs have been run for a
long time with a restoring boundary condition on sur-
face temperature, more recent computations either with
constant surface flux or coupling to atmospheric energy
balance models have revealed the emergence of decadal
oscillations. The nearly constant surface flux of this cou-
pled box model that captures but the largest scales of
variability shows the relevance of the simple constant
flux experiments. To further appreciate that the model
is a physical analog of the behavior of OGCMs we have
studied the effect of a switch to restoring boundary con-
ditions. We know from (6) the atmospheric temperature
contrast yO that is prevalent at the advective fixed point.
When the limit cycle is well established, we suddenly
freeze the atmosphere by fixing y to yO in (9). The
oscillations are now observed to be strongly damped
and the system converges back to the advective fixed
point in less than 100 yr. This result that agrees with
OGCM transitions is not difficult to understand. When
y is fixed, the heat equation has the same form as (10),
but with a new repartition between forcing and diffusion
leading to different values of q and d. The damping that
comes from the diffusion d increases to a value a (KO

1 l), a factor of 3.2 larger than the diffusion of the
free atmosphere case for the values of the chosen pa-
rameters. The diffusion of the frozen atmosphere case
can be shown to reach the much lower diffusion of the
free atmosphere only at the price of reducing the air–
sea exchange coefficient l to values that are small com-
pared to B 1 2KA.

It appears that this 2 degree of freedom climate model
reproduces very well the decadal oscillations observed
in the three-dimensional model of section 2. To evaluate
if this success persists farther away from bifurcation,
the oscillations are shown in Fig. 10 at a value 50%
above bifurcation. The oscillation now exhibits a defi-
nite nonlinear character; the temperature rise signifi-
cantly slows down with the overturning staying at low
values for a larger fraction of the period. The linear rise
is increasingly controlled by the sole surface flux. At a
given temperature threshold, the overturning rises
abruptly, with the instability term in (12b) exceeding
the frictional term. In addition the temperature starts to
decrease quickly since the advection works to eliminate
the temperature contrast. The instability term in (12b)
falls below the threshold and c starts to decrease, but
less rapidly to low values. During the long diffusive rise
that follows, the instability and frictional terms remain
small. Unfortunately, the 3D oscillations have nonlinear
modulations different from the box model oscillations
(cf. Figs. 2 and 9a). The increasingly short (long) period
of rising of temperature (overturning) in the 3D model
is just the opposite of what they are in the box model.
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FIG. 10. (a) Temperature (solid), overturning (dashed) are shown in the nonlinear regime at g
values 50% above critical. (b) The surface flux (solid) and advective flux (dashed) of equation
(12a) are shown. (c) The instability term (solid) and friction (dashed) of equation (12b) are shown.
Note the linear temperature rise that occurs in response to the surface flux when the overturning
is small for a large fraction of the period and the steplike behavior of the instability that arises
at a given threshold. The rise in c is then followed by an almost equally rapid decrease (due to
the friction term).
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6. Further comparisons with the 3D coupled
ocean–atmosphere model

The parameterization of the box model provides a
simple framework for the existence of oscillations that
may be useful for conceptual purposes. Its strength, if
any, must come from a comparison with three-dimen-
sional models. Some important features such as the tran-
sition from steady to oscillatory states through super-
critical Hopf bifurcations (Chen and Ghil 1996; CVH)
are built in our box model parameterization. We have
shown that the variations of parameters in the two-box
model follow qualitatively what happens in the 3D mod-
el and we believe that the success of this parametrization
is due to the nearly linear regime of the decadal oscil-
lations in the coupled 3D model. In spite of obvious
differences at finite amplitudes if we insist that the im-
portant variables that govern the 3D oscillations are the
north–south temperature contrast and the overturning
stream function, we could estimate these variables in
the coupled model simulation (section 2) and check
whether their rates of changes are governed by rela-
tionships similar to the box model equations (12).

Although the parameterization of the box model is
apparently not fully adequate to describe the (nonlinear)
regimes of the coupled model, we have tried to estimate
the coefficients of the box model parameterizations from
the times series of the variables x and c as observed in
the coupled model. Knowing both the variables and their
time rates of change, we write for instance an estimate
Zi of /c as the linear combination at each time step i:ċ

Zi 5 axi 1 bc i 1 c 1 .2dci

The unknown coefficients (a, b, c, d) are estimated
by minimizing the mean-square difference between the
observed /c and the estimator Zi. The coefficients ofċ
the box model that best describe the coupled model
behavior can then be obtained. Because there is a sig-
nificant model trend over the 6000 yr of the experiment,
the optimal fits were done on each 1000-yr-long time
slices. Overall the parameterization captures most of the
variations of The estimated k and x* show someċ.
consistency between different time slices while g and
c* are not very well constrained (even the sign of g
changes). The correlation coefficients between /c andċ
each term of the parameterizations support a tight fit
with x while the frictional processes appear as secondary
influences. The optimal values of the box model param-
eters averaged over the six independent time periods are
k 5 0.19 yr21 K21, x* 5 3.65 K, c* 5 9.75 Sv, g 5
1.7 3 1025 Sv22 yr21, the last two showing much un-
certainty (in fact the value for g is negative for the latest
periods with the best fit, suggesting that the frictional
parameterization is the less satisfying).

The same procedure is applied to the temperature
equation. It is only in the last 2000 yr that the box model
parameterizations captures most of the variation of x,
when the mean state does not evolve anymore. The most

robust elements of the parameterization are the constant
heat flux and the dependence on cx (which is better
suited than a dependence in c alone). On the other hand,
the horizontal diffusion factor is not well defined wheth-
er in sign or amplitude.

7. Conclusions

Although it has been possible for box models to help
in a physical understanding of the multiple steady states
of the thermohaline circulation (Stommel 1961), this
was not the situation for decadal to interdecadal oscil-
lations. We propose a climate model without hydrolog-
ical cycles and salinity effects that exhibits a regime of
self-sustained oscillatory solutions in the two-boxes cat-
egory. It relies on a new physical mechanism: when the
available potential energy in the ocean exceeds a given
threshold, a baroclinic instability develops that feeds the
kinetic energy of the overturning circulation. The in-
creased heat transport by the overturning then restores
the available potential energy toward its original value.
However, the system does not converge to a steady state
because of the existence of phase lags between the over-
turning and the available potential energy. The existence
of such phase lags was proposed by HCW to be caused
by the finite propagation speed of planetary waves in
the oscillatory states of OGCMs, and the instability
mechanism has been attributed by CVH to the baroclinic
instability of the oceanic circulation in regions of high-
est vertical shear that usually coincide with those of
highest heat losses to the atmosphere.

We have proposed to parameterize this mechanism
by using Landau’s equation for the overturning and giv-
en the general conditions under which the system can
oscillate. A Hopf-type bifurcation to a limit cycle exists
in the parameter space appropriate to the present state
of the ocean–atmosphere system. On these timescales,
which are long in comparison with atmospheric ad-
justment timescales, the role of the atmosphere is one
of passive adaptation to the ocean state. In agreement
with GCM behavior, it is demonstrated that a switch of
the model to restoring boundary conditions to a frozen
atmosphere drives the model solution back to steady
state because of increased damping. The very good
agreement that exists between the box model and the
3D model at small amplitudes does not extend, however,
to the nonlinear regime. The oscillations of the tem-
perature contrast in the box model show a marked asym-
metry of evolution toward a sawtooth pattern (slow rise,
more rapid decline) while the overturning remains at
large amplitudes for a shorter fraction of the period.
This behavior differs from that of the same variables
observed in the coupled PGL–EBM model with a rapid
rise of the temperature contrast followed by a slower
decline. Given the results of the fit that was carried out
between the coupled model variables and the box model
equations, we may suspect that the reasons for the dif-
ferent behaviors may originate from an incorrect pa-
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rameterization of the dissipation and diffusion process-
es, because the fit was particularly poor for these pro-
cesses.

We have refrained, thus far, from commenting on the
possible applications of the present study to the obser-
vations of the climate system. Because the observed
signals at decadal periods are a small fraction of the
mean signals, the proposed physical analog that works
well in the linear regime could be relevant. Although
there is strong evidence from coupled model studies that
the ocean can integrate the high frequency stochastic
surface forcing to generate a continuous red spectrum,
we feel that it is certainly too early to say that this is
the only cause of decadal variability in the climate sys-
tem. A consequence of the present study is to show the
great sensitivity of the thermohaline circulation to the
value of the appropriate friction coefficient caused by
the proximity of the bifurcation point. Direct applica-
tions would require a dissipation estimate for the over-
turning that is obviously lacking at the moment. An
immediate concern is to improve the comparison be-
tween zonally averaged and 3D models in the nonlinear
regime, an objective that brings us back to the closure
problem for the zonally averaged thermohaline circu-
lation at decadal periods, a closure necessarily different
from that at steady state.

Maas (1994) proposed low-order model equations
that were derived from an angular momentum principle.
He kept the inertial terms and obtained a system with
3 degrees of freedom for the zonal, meridional, and
vertical density gradients. With this added freedom the
system exhibited chaos, but Maas pointed out to a state
of 500-yr period, self-sustained oscillations with the ac-
tual parameter values of the ocean. It would be inter-
esting to compare his model with ours in the future,
focusing specifically on decadal oscillations. In the
meantime, we feel that it is appropriate to analyze the
oscillations found in coupled ocean–atmosphere models
to check whether the instability mechanism exploited
here that appears to summarize the linear regimes of
simplified coupled ocean–atmosphere (PGL–EBM) sim-
ulations might also be relevant in situations of much
higher complexity.
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