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ABSTRACT

The spectrum of baroclinic basin modes is investigated in a two-layer wind-driven quasigeostrophic model
through weakly nonlinear multiple time-scale expansion in the Burger number. The baroclinic basin modes
are mainly advected by a barotropic steady Sverdrup flow. Emphasis is given to the regularizing influence
of dispersion rather than to dissipation. In the inviscid large-scale limit, that is, for basin scale considerably
larger than the Rossby radius of deformation, all of the basin modes are neutral. Their typology is then
numerically examined (with some necessary dissipation), and their frequency and spatial properties are
discussed. Three types of modes arise for some wind forcing strong enough to produce a recirculating gyre
with closed geostrophic contours: the classical Rossby basin modes deformed by the mean flow (shadow
modes), stationary modes, and recirculating pool modes, the two latter being trapped in the closed-contours
pool. Focus is made here on the recirculating modes that could have very low frequencies for moderate
recirculating gyres. Strong gyres lead to higher frequencies, and recirculating modes resonate with deformed

Rossby basin modes.

1. Introduction

Analysis of historical oceanic data (Kushnir 1994;
Mann et al. 1998, among many others) provides evi-
dence of interannual to interdecadal variability, also
found in coupled (Delworth et al. 1993) and ocean
(Greatbatch and Zhang 1995; Colin de Verdiere and
Huck 1999; Delworth and Greatbatch 2000) general cir-
culation models. Baroclinic Rossby basin modes sug-
gest a possible explanation for these variability signals;
they are westward-propagating Rossby waves reiniti-
ated at the eastern boundary through rapid Kelvin
wave adjustment (LaCasce 2000) or nonresonant iner-
tia—gravity wave response (Primeau 2002). Global ob-
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servations (Chelton and Schlax 1996) have also re-
vealed in tropical regions a more coherent signal and
anomalously faster propagation than in the northern
part of the subtropical gyre; see the introduction in
Spydell and Cessi (2003) and references therein for a
thorough review.

In the inviscid case, all basin modes are neutral,
whatever their spatial scale, in the absence of a mean
circulation. In the context of a reduced-gravity one-
layer model, Cessi and Primeau (2001) argued that sto-
chastic (white noise) atmospheric forcing equally ex-
cites basin modes, but also that only the low-frequency
part of the spectrum emerges because of dissipation:
the low-frequency modes are, indeed, the large-scale
ones and are thus less dissipated and more resonant. In
the presence of a mean flow, the dissipative selection
mechanism may not survive. Indeed, the nonlinear in-
teractions could promote a growing mode fed by the
mean flow (Ben Jelloul and Huck 2003).

More realistic ocean models must include, at least,
two active layers. Here, we will treat the simple aca-
demic case of a quasigeostrophic two-layer ocean
forced by a time-independent wind stress in a closed
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basin (section 2). Some recent studies on the ocean
adjustment to wind forcing via baroclinic Rossby wave
have shown the advecting role of the mean flow (Sirven
and Frankignoul 2000; Dewar and Huang 2001). Spy-
dell and Cessi (2003, SCO3 hereinafter) recently exam-
ined the baroclinic eigenmodes in a two-layer configu-
ration where the barotropic mode is decoupled; they
analytically considered an approximated inviscid prob-
lem and numerically solved the forced-dissipated case.
They identified oscillatory basin modes in the shadow
region (hence named shadow modes) as well as pool
modes in the case of closed geostrophic contours. They
did not retain the dispersion terms in their model equa-
tions and found baroclinic mode damping independent
of friction (Cessi and Louazel 2001). As we shall see
hereinafter, this is not the case whenever dispersion is
conserved, which allows an alternative adjustment to
boundary conditions.

Low values of the Burger number, defined as the
squared ratio of the Rossby radius of deformation to
the basin length, are typical of basinwide oceanic cir-
culations. The use of the Burger number as a small
parameter for a weak nonlinear multiple-time-scale ex-
pansion allowed us to separate the Sverdrup flow from
the barotropic basin modes (section 3) and baroclinic
modes (section 4). Baroclinic modes consist of resonant
Rossby waves whose propagation is influenced by the
steady barotropic flow. Different types of modes can
arise depending on the relative strength of the barotro-
pic mean flow advection and Rossby waves velocity:
they are numerically found for various regimes in the
parameter space (section 5). Differences with SC03 re-
sulting from the relative role of the dissipation and dis-
persion to the type of mode will be outlined throughout
the paper. Last, we will discuss our results, draw con-
clusions, and suggest new developments in the way
these investigations could be pursued to study nonlin-
ear mode selection by the mean flow (section 6).

2. System setup

a. Quasigeostrophic dynamics

The quasigeostrophic (QG) potential vorticity equa-
tions for two active layers read in terms of the upper
(i = 1) and lower (i = 2) layers streamfunctions i
(m?s™Y):

[0, + J (U, ')][Vz'l’l — Fi( — i) + Byl

= 1];_01 W+ kVV, — Fi(y, — §,)] and  (la)
[9, + J(a, VIV, — Fo(h, — ;) + By]
= KVZ[Vzlllz = B, — llfl)] - )\Vzllfz’ (1b)
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fo ., _p—p
Fi - ﬁ » 8 = Po 8> (2)
g is the gravity acceleration, H; (p) are the layer thick-
nesses (densities), p is the seawater density, f, is the
local value of the Coriolis parameter, and (3 is its me-
ridional gradient. The forcing term is the usual Ekman
pumping at the base of the mixed layer; it is related to
the wind stress as W = curlt/(p, f)). The dissipative
processes include bottom friction (with coefficient A)
and a Newtonian dissipation (with coefficient k) of po-
tential vorticity. The streamfunctions are constant [{y =
Y, (1), i = 1, 2] on the boundaries 99 of the domain D
and verify the mass conservation constraint [[,, dx dy
(&, — ¢,) = const (Larichev 1974; McWilliams 1977,
Flierl 1977).
By using the Sverdrup balance and the barotropic
Rossby wave period, let us introduce the nondimen-
sional variables:

(x,y) > L.(x,y), t— (BLx)flt, and

- To(PoHB)_llP = foLxWO(HB)_lllla (3)

where L, is the zonal width of the basin, r = L,/L, is the
horizontal aspect ratio, H = H, + H, is the total basin
depth, and W, is the characteristic amplitude of the
Ekman pumping. The two-layer p-value QG equations
can then be written as

ALV — Bu™'8,(yy — P)] + By + ad (P, i)
+ BuaJ(yy, Vi)
= STIWE + VVZ[Vzdfl - Bu7182(d/1 — )] and

(4a)
0,[V?y, = Bu™'8,(h, — Y] + B, + al(h, Py,
+ BuaJ(h,, Vi)
= WV, — Bu '8,(fp, — ¥)] — uV?4,,  (4b)

where the Burger number Bu, the baroclinic Rossby
radius of deformation R, and the scaled layer thick-
nesses §; are defined, respectively, as

R,\2 "H,H. H,;
Bu=< d), R2=g—l 2 nd :

="y =7 ©

L

s
X

and the adimensionalized dissipation parameters are
given by

A
BL.

K
v=—7 and p= (6)

L
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Let us also introduce the barotropic streamfunction de-
fined by

Yoy = 01y + S, (7)

and the nondimensional forcing parameter

o= ﬁ)WO
B*RZH’

®)

which measures the relative contribution to the poten-
tial vorticity of the thickness variation of layer 2 due to
the wind forcing and the planetary vorticity gradient
(Pedlosky 1996, p. 139). The nondimensional param-
eter B = 1 is kept to track the origin of the term in-
volved in the algebra of the following sections.

By using typical values for the North Atlantic Ocean
midlatitudes: L, = 4000 km, H = 4000 m, R, = 40 km,
fo=10*sB=2x10"m's, Wy=2x10"°
ms ', and k = 1000 m?s !, the nondimensional pa-
rameters read Bu = 1074, « = 0.078, and v = 7.8 X
1077, Comparison with SC03 results should be straight-
forward, except for some slight differences in the nota-
tions and configuration: Our Bu is their €, our « is their
v, and our v/Bu as shown later for the baroclinic mode
dissipation is their v; their domain extends from y = [0;
2] with two gyres instead of a single gyre extending,
here, from y = [0; r].

b. Basinwide scaling

For a basinwide circulation where a small Burger
number approximation is valid,

R,\?
Bu = (Lx> <1, )
Young and Rhines (1982) provided an acclaimed
theory for the steady forced—dissipated flow. We pro-
pose to jointly study this steady component of the cir-
culation with its time-dependent part. This makes us
anticipate as a major feature of our system the interac-
tion between the long baroclinic Rossby waves and the
mean barotropic circulation determined by the Sver-
drup balance. The flow can be decomposed into a
forced-dissipated stationary component ¢ and a time-
dependent component i, with each of them being also
separable into barotropic counterparts as follows:

Ppe = 81 + S, (10)

U = Yo = e

Poe = P — Yy,
and ¥, = P + 81 1)

Using the definitions (10) allows us to end up with the
following system:
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9V + By + Buad (Y, Vi)
+ Buad; 8,/ (e, Vzd’bc)
=Wg+ VV4lebt - M52V2(¢’bt + &) and
(12a)

9BV — ipe) + BUuBd, e + BuJ (e, atfiyy)
+ Bu(87 — 5 (e, Vipe) + BU (e Vi)
+ Bu?J (Y, VZU,) = —Bud, "W,
= Bup V(i + 810c) + vVABUV e — ).
(12b)

Both baroclinic and barotropic modes satisfy the fol-
lowing boundary conditions:

Vxe 8D, ie (bt,bc), and Y (x)=yl(), (13)

where ¢ is a real function and depends only on the
time variables ¢; the mass conservation constraint reads

fJ' dxdy (y, — ¢) = ff dx dy s, = constant.
D D

(14)

With no loss of generality, the barotropic streamfunc-
tion boundary condition is set at {5, = 0 on the domain
frontier 6D.

As previously done in Ben Jelloul and Huck (2003)
where the method was thoroughly described for the
reduced-gravity one-layer QG model, let us solve this
system by a weak nonlinear expansion for the stream-
functions of the form

Por = Ppo T Bugy + Buzd’bl,z +--- and
Yoo = Ppeo T Buhe; + Buztl/bc,z +-, (15)
on assuming a multiple time-scale expansion:
9, =9, + Bug, + Bug, +---. (16)

One should note that the time scale for ¢, corresponds
to the basin crossing time for baroclinic Rossby waves
as used in SCO03:

TO _ Lx
Bu BRZ’

(17)

1

Let us also define the following notations for specific
time average:

s 1 (T
f'= hm? dat f(to, tyy e oo sty .00,

Ti—>% 1; 0

(18)
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Last, the steady component of any function fis denoted
f, which is formally equivalent to f" .

3. Barotropic Rossby basin modes and steady
Sverdrup flow

a. Time-scale separation of basin modes

At first order, (12b) is trivial and enforces the period
of the baroclinic Rossby modes to be slower that the
barotropic modes:

9 Poco = 0 and o= lljbc,Ol()' (19)

After canceling the stationary terms at first order in
(12a), the inviscid barotropic Rossby wave equation
reads for the departure from the stationarity stream-
function Jlbt,O:

thll’bl,o = azovzdfbt,o + B0 = 0

it is easily solved over the domain and conserves energy
since the circulation associated with the basin modes is
zero (Pedlosky 1987):

(20)

N f f dx dy |Vl of* = 0. 1)
D

The solution is decomposed into a sum of barotropic
Rossby normal modes:

Uoco = D [Aqlty, . . )Pae™0 + c.c],

where c.c. is the complex conjugate of each term to
keep the solution real; they satisfy

(22)

DD, = iOV2D,, + Ba, Py =0 and

! dx dy [VP,[* =1
2 nyl Ql_

The analytical solution from the classical paper by
Longuet-Higgins (1964) and textbook by Pedlosky
(1987) is

(23)

iBx\ . . nmy
d, = Dg, exp 5 ) Sy sin —=, (24a)

where

(24b)

b. Stationary solution

1) SVERDRUP FLOW

Averaging the first-order evolution equation yields
the steady-state solution:

BabeI,O = WE + D’ (25)
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where the overbar denotes averaging over all time
scales t;. The solution is composed of an inviscid Sver-
drup interior circulation and a thin western boundary
current where the dissipation D is active. Some friction,
whatever its type, is needed to dissipate the potential
vorticity input: this occurs in a western boundary layer
whose thickness is controlled by the dissipation coeffi-
cient. In the following and except when specifically
mentioned, we will assume that dissipation is strong
enough to stabilize the strong western boundary cur-
rent. Moreover, the basin zonal width will be also as-
sumed to be sufficiently large relative to the western
boundary layer thickness. These hypotheses allow us to
write

1
Vo = oo = B We — B 18(x) f dx Wg, (26)
0

where & is the Dirac distribution and represents the
strongly localized western boundary current. The
streamfunction is thus expressed as

o = B~ Welx — H(x)],

where H(x) is the Heaviside function. In the expression
of the meridional velocity (26), the western boundary
current is crudely represented by a delta function. A
finite width would be allowed by changing the delta
function into f(x/A)/A where the function f, satisfying [
du f(u) = 1, reflects the boundary current structure and
A its width. For example, Stommel’s solution corre-
sponds to a function f(x/A) = exp(—|x|/A), where A =
w/B. In the following we will consider the academic
rectangular basin geometry where the Ekman pumping
satisfies

27)

Vxe D=[0,1]X[0,7] and

. kmy
Wex,y)=Wg(y) = - SIHT- (28)
This Ekman pumping is typical of the North Atlantic
subtropical single gyre (k = 1) and subtropical-
subpolar double-gyre system (k = 2).
At next order in Bu, the system (12) reduces to

thlpbl,l + aqulv’jbl,() + ](lllbl,O’ Vzlpbt,o)

+ 28,8,/ (d’bc,O,Vzl!jbc,O) =0 and (29a)
91, Qoe1 0, Qboeo + T (WPoe oo + BY)
+8;'W, =0, (29b)

where the dissipative terms are neglected, and the lin-
ear operators £”* and Q are defined by

Qf=BuVf—f and Lf=0,Vf+ oS (30)
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LATITUDE
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0.4 0.6 0.8 1 0 0.4 0.6 0.8 1

LONGITUDE LONGITUDE

F1G. 1. Geostrophic contours for two different values of the forcing strength (a/e, = 1/2 and 2). Contour
interval is 0.05 in nondimensional units, and positive (negative) contours are solid (dotted). Since the B-plane
quasigeostrophic potential vorticity contours are defined up to an additive constant, we choose the latter so that
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the zero line corresponds to the northern boundary.

It is worth noting that we kept the higher-order term
appearing here as a linear dispersive term. This will be
commented upon later.

Averaging (29b) over time ¢, yields

3y, Qbpeo T J(Wpeo@ng  + BY) + 8 "W =0. (31)

Further averaging of (31) provides an additional equa-
tion to (25) and closes the steady forced-dissipated
problem:

J(@bc,o’ C@bt,o +By) + 81_1WE = 0. (32)

2) YOUNG AND RHINES (1982) THEORY

This system was solved by Young and Rhines (1982)
and their solution consists of a barotropic flow satisfy-
ing the Sverdrup balance except in a thin western
boundary layer. In the case of closed geostrophic con-
tours, that is, contours of o@bL0 + By, the baroclinic
structure of the gyre is such that the lower layer is at
rest, except in a recirculating pool where potential vor-
ticity is homogenized. This pool can exist only when the
zonal barotropic transport is sufficiently strong (Ped-
losky 1996; Fig. 1); that is,

Br
a> o, = k"
Fulfillment of this condition gives the maximal zonal
extent of the pool as x, = 1 — Br/(kam). The solution
can then be summarized as follows: outside the pool
it is

(33)

Jbt = Blf dx W, ch,YR = _8171&% and

(34)

El,YR = Sl_labt, 'TUZ,YR =0, (35)

whereas inside the pool it becomes
Py = B_lf dx W, Ebc,YR =8 "By —yu)» (36)

Py yr = 81 (1 — 8,0, — 8,8, 'B(y — y,), and

EIZ,YR = O@bt + By —y.)s (37)

where x, = 1 is the longitude of the basin eastern
boundary and y, = r is the latitude of its northern
boundary.

One should note that this solution needs some fric-
tion between the two layers to mix the lower layer po-
tential vorticity, but setting this dissipation to an arbi-
trary low value has no effect on the resulting solution
(36). These considerations led us to neglect friction at
least at the first order of the time-varying part.

3) GENERAL INVISCID SOLUTION
Rewriting (32) by using (25) yields

T(Wheo '+ 81 Wpior alio + BY) =0, (38

where the partial time average is the one defined
above. The general solution becomes

erl = f(io + BY) — 5;I$bt,0’ (39)

where fis an arbitrary, still undetermined, real-valued
function. The use of partial fast-time average instead of
an absolute time average is essentially a matter of
mathematical rigor; both are equivalent here as we do
not analyze any higher-order interaction acting on time
scales longer than #,. The Young and Rhines (1982)
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solution is actually a particular case of the general
equation in (39) for the function f(x) = & 'x.

4. Baroclinic basin modes

Before focusing on the baroclinic component of the
flow, let us briefly describe the results issued from the
barotropic equation in (29a). Elimination of resonances
provides an amplitude equation for any barotropic ba-
sin mode and highlights the interaction between the
barotropic basin modes and the Sverdrup flow. The
complete analysis was given in Ben Jelloul and Huck
(2003). To compute the nonresonant fields, it is conve-
nient to use the following notations:

Yoot = 2 [A; (Qs 1y, D oe ™
+ A,20:1,, .. )P0 M0 + cc] + Yo to,

(40)

where i, ;“ is the slow component, which evolves on
time scale ¢, of the first correction to the barotropic
flow. The biharmonic contribution satisfies
A0, ...) = AXQ) and
Drg = —(L3n) (Dg, VPy), (41)

where the linear anti-Hermitian operator L, is de-
fined by

3%, =2i0Q + Ba,. (42)

The remaining nonresonant terms force the slow evo-
lution of the order-one perturbation:

o T w2y O 2
Poer = [T W0V P0)  + 28180 (e 00 Ve )]
(43)
This last expression depends on the baroclinic compo-
nent whose detailed analysis is provided below.
An orthogonal base of advected baroclinic Rossby
basin modes

The baroclinic modes equation is obtained from (31)
by canceling the stationary contributions:

atl(BUVZJ’bc,o - 'Lbc,()) + J(lLbc,O’ 'Lbl,O + By) = 0.

Integration over the whole domain by using the mass
conservation (14) and the boundary conditions (13)
yields

- Yoo +
atl § i‘ibc : dS = _djgc,() é M : dS = 0,
8D 8D

(44)

Jas

(45)
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where @1, = (—ayfpbcyo, 8xlilbc,0); this is the conservation
of the circulation associated with the oscillating baro-
clinic function. The system (44) being linear and au-
tonomous, we look for solutions separable in space and
time, in the modal form: flfbw = exp(ot)d(x, y). If U is
the velocity of such an eigenmode associated with a
nonvanishing eigenvalue o, its circulation must be zero
by (45).

One can easily check that the mode energy is con-
served since the barotropic steady flow has only an ad-
vective action on the baroclinic streamfunction at this
order of the expansion [multiply (44) by Jlbc’(, and inte-
grate over the domain with the appropriate boundary
conditions].

Equation (44) can be rewritten as follows:

QilLbCll’bc,o = at,‘l’bc,ﬂ + Q717¢bc,o =0, (46)

where the linear operators 7and £ are defined by

Tf=J(fi o+ By) and L£°=0,Q+ T (47
Defining
1
(f18)e= _fo, dx dy fQg
1
=5 JJ dx dy (BuVf-Vg + fg)
1
+ 5 ﬁ)w ds Buf(n- Vg) (48)

provides a scalar product for the space of streamfunc-
tions that are constant on the boundaries and have zero
circulation since the last contour integral can be rewrit-
ten as

§ dsf(n‘Vg)=f§ ds(n‘Vg)=f§ u, - ds =0,
5D 5D 5D

(49)

where u, = (-d,g, 9,g) is the velocity associated with the
streamfunction g.

The operator Q 7T is antisymmetric for the previ-
ously defined scalar product metric; it is thus diagonal
in a base of orthogonal eigenvectors ¢, with purely
imaginary eigenvalues iw satisfying

ind, = —Q T,

This property allows us to conclude about the purely
oscillating nature of the baroclinic modes on time scale
t, and write solution for the baroclinic mode as

Poe.o = E [Bo(w; ty, . . ) e + c.c.],

we Spe

(50)

(51)



NOVEMBER 2005

where Sy, is the spectrum of the eigenvalues. The nor-
mal modes ¢, satisfy

£, = iwQd, + Tp, =0 and

- ff dx dy ¢,Qb,, =1,
D

which result from the normalization of the modes by
their energy value.

In contrast with the study by Spydell and Cessi (2003)
where only dissipation was retained to enforce the cor-
rect boundary conditions, we kept the higher-order dis-
persion term in (44) because it is the only one that
enables the solution to satisfy the western boundary
condition in the presence of advection by mean flow.
With no dispersion, the phase crests starting from the
meridional eastern boundary reaches the western
boundary with a nonrectilinear shape resulting from
differential advection by the Sverdrup flow. Thanks to
dispersion, short Rossby waves have an eastward group
velocity; hence the reflection of westward long Rossby
waves at the western boundary generates short Rossby
waves, and their superposition satisfies the no-flow
boundary condition.

Equation (44) can also be seen as the propagation of
baroclinic Rossby waves in an inhomogeneous plan-
etary vorticity gradient. By studying the long-wave limit
for Rossby modes in inhomogeneous potential vorticity
gradient in a basin with a large meridional extent,
where the B-plane assumption is no longer valid (no
background mean flow), Cessi and Louazel (2001)
found not only that these modes are more damped, but
also that higher modes are more damped than lower
ones. The latter results from the dephasing experienced
at the western boundary by an initial rectilinear north—
south crest emanating from the eastern boundary. The
greater dephasing experienced by higher modes leads
to a decay rate proportional to the mode wavenumber
m. One may wonder how a simple linear mode can be
damped with neither mean flow to feed or be fed by
higher-frequency modes, nor dissipation since the Co-
riolis force does not work. Cessi and Louazel (2001)
and SCO03 both connected the inviscid interior solution
to boundaries by solving the dissipative boundary layer
at the western boundary. This mechanism was also ex-
amined in nonrectangular basins by Primeau (2002) and
LaCasce and Pedlosky (2002). One may prefer the ef-
fect of dispersion to satisfy the boundary conditions and
reject dissipation processes at higher orders (especially
for theoretical purposes); this procedure would allow
one to study destabilizing nonlinear interactions as well
as stabilizing dissipation effects at the same higher or-
der—this issue will be addressed elsewhere.

(52)
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Last, one should note that the limit Bu = R, = 0 is
singular since it implies that the gravity or the full depth
is zero.! Physically the Rossby radius is a cutoff scale
below which the fields somehow are smoothed; taking
it equal to zero yields singular solutions. Therefore, the
Burger number and Rossby radius can be assumed as
small as needed, but must remain finite.

5. Numerical resolution and baroclinic typology

Frequencies and spatial structure of the modes are
numerically computed from (50). We solve the gener-
alized eigenvalue problem arising from finite differen-
tiating (44), as done by Cessi and Primeau (2001):

io(BuV,, — ¢,) = —(B + ad, iy 0)d.b,,
+ aax&bl,oayqsm
+ vBu 'V¥(BuV?p, — ¢,), (53)

using Arnoldi’s method as provided in “ARPACK”
(Lehouck et al. 1998) for a prescribed number of eigen-
values (typically 100) with the largest real part. Down-
gradient potential vorticity eddy diffusion is needed to
avoid grid point structures and isolate large-scale
modes through their lower damping rate. Our numeri-
cal procedure differs from the spectral method used by
Spydell and Cessi (2003) because they projected (53) on
a base of Jacobi polynomials well suited for resolving
dissipative layers at the domain boundary. On the other
hand, our spatial resolution is uniform and allows ac-
curate resolution of structures with internal boundary
layers like the ones appearing on the edge of the closed
geostrophic contours pool.

Our equations conserve dispersion as an alternative
regularizing mechanism, even if their resolution re-
quires a small dissipation for numerical convergence
and mode selection in the case of a realistically small
Burger number.

A fundamental result is that, depending on the forc-
ing strength, the spectrum of the linear operator admits
a qualitative transition. All following calculations were
made with oceanically relevant parameters: Bu = 10~%,
r = 0.7, and /Bu = 107> on a 100 X 100 grid; a, rep-
resenting the forcing strength, hence the barotropic
streamfunction amplitude, was the varying parameter.
Moreover, the barotropic flow was assumed to be a
single gyre flow with a Munk-type boundary layer of
nondimensional thickness equal to 0.05 (5 grid points).

We made additional calculations in order to clarify

! Note that the limit Bu = R, = % can be fulfilled and yields to
Euler equation on the 3 plane.
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TABLE 1. Influence of dissipation on the largest-scale modes damping rate and frequency (eigenvalue iw is provided) as a function
of Burger number for a/a, = 1/2 (R is deformed Rossby basin mode followed by zonal and meridional wavenumbers). In the inviscid
case, the real part of the eigenvalue largely varies with the resolution: it decreases to —2.8 X 107 for 200 X 200 grid points and —1.2

X 1073 for 300 X 300 grid points.

—4
Bu: 10 1072

v R2 X1 R3 X1 R2X1

0 — — —1.1 X 10~* + 4.706i
1074 —0.623 * 6.079i —1.088 + 13.551i —0.042 * 4.695i
1073 —0.760 = 5.958i —1.643 = 13.487i —0.275 * 4.639i
1072 —1.486 = 5.751i —3.840 = 12.191i —2.237 = 4.001i
107t —7.011 £ 5.365i —19.306 = 9.578i —

the relative influence of dispersion and dissipation for
two typical forcing values (Tables 1 and 2). We also
performed one-dimensional calculations to estimate the
sensitivity of the results to the horizontal resolution,
which could hardly be increased in two dimensions
since the (100 X 100) eigenvalue problem already re-
quires several gigabytes of memory. All together, these
results show that friction always controls the damping
rate, even when it is small relative to dispersion (see
column Bu = 10~2 in Tables 1 and 2). Therefore and in
agreement with our analytical results, we expect all
modes to become neutral in the inviscid limit. We veri-
fied it numerically for Bu = 1072 indeed, in this case,
we resolved the inviscid eigenmodes thanks to the sepa-
ration of mode frequencies by dispersion. However,
when the Burger number tends to zero, the Rossby
deformation radius becomes smaller than the resolved
scales; smaller scales thus appear in the western bound-
ary, but their strong dissipation enhances damping. In
addition, dispersion becomes too weak to allow the
separation of eigenmodes with the same zonal wave-
number but different meridional structures (all of them
have almost the same eigenvalue). We speculate that, if
we had been able to actually resolve such scales (i.e.,
low-frequency small-scale Rossby waves) and accord-

ingly reduce the friction coefficient, we would have
separated the modes and the damping rate would have
tended to zero. This conjecture contrasts with SC03
results where dispersion was neglected. Last, our one-
dimensional calculations suggest that only the larger-
scale modes are well resolved in our analysis; discrep-
ancies exceeding 10% between poorly and well-
resolved modes are thus expected in frequency,
damping rate, and especially spatial structure for wave-
numbers higher than 5.

a. Deformed Rossby basin modes (shadow modes)

With no forcing the eigenmodes can be classified into
two branches (Larichev 1974; LaCasce and Pedlosky
2002): the former consists in modes with streamfunc-
tion vanishing on the boundaries with dispersion rela-
tion

- BBu !
2\/Bu71 + 7 (m* + n*r?)

and a spatial structure similar to the barotropic one
(24a), but only the modes with vanishing volume, that
is, those with even n, have to be kept. The latter is
formed of modes with nonvanishing streamfunction on

Q

; (54)

TABLE 2. Influence of dissipation on the largest-scale modes damping rate and frequency (eigenvalue iw is provided) as a function
of Burger number for a/a, = 1.5 (R is deformed Rossby basin mode, P is oscillatory recirculating mode, and S is stationary pool mode,
followed by zonal—or along potential vorticity contours—and meridional—or across potential vorticity contours—wavenumbers). In
the inviscid case, the real part of the eigenvalue largely varies with the resolution: it decreases to —5.6 X 107° for 200 X 200 grid points,

and —2.5 X 107° for 300 X 300 grid points.

—4
Bu: 10 1072
v R2 X1 P1x1 S1 R2 X1

0 — — — —22X107° + 6.272i
1074 —1.059 + 8.224i —0.194 + 2.618i —0.058 —0.073 * 6.253i

3x10°* —1.322 = 8.117i —0.501 = 2.569i —0.164 —0.169 = 6.218i
1073 —1.548 = 7.951i —1.094 + 2.492i —0.410 —0.448 * 6.135i

3x 103 —2.017 = 7.679i —2.581 = 2.577i —1.093 —1.101 = 5.868i
1072 —2.879 * 6.864i —5.122 = 3.218i —2.554 —2.653 = 5.018i
107! —7.651 * 5.604i —22.97 + 2.420i —-11.132 —
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FIG. 2. Frequencies and damping rates for four different weak barotropic flows. Frequencies are in
abscissa, and damping rates are in ordinate. The value of o/, is indicated for each case.

the boundaries: in the limit of vanishing Burger num-
ber, they are large zonal-scale low-frequency modes
(LaCasce 2000; Cessi and Primeau 2001).

Under weak forcing, that is, @ < «,, the geostrophic
contours are not closed, as seen above (Fig. 1). De-
formed Rossby basin modes (or shadow modes), which
are the continuous extension of the classical Rossby
modes (i.e., the neutral linear perturbation of a resting
ocean), are obtained for a nonzero Sverdrup flow.
Their periods are about the time spent by a large-scale
Rossby wave to travel across the basin; that is, L,/(BR3)
for the first zonal mode, and its divisors for higher zonal
wavenumber modes (w,, = 2mm). Figure 2 illustrates
frequencies and damping rates computed in the case of
a single subtropical gyre and different weak forcings.

The large-scale low-frequency Rossby basin modes
are deformed by the barotropic flow: they are acceler-
ated (slowed) in the southern (northern) half of the
basin. Moreover, the modes with higher zonal wave-
numbers show a reduction of their corresponding wave
speed due to stronger dispersion and are arrested ear-
lier when propagating westward (Fig. 3).

One should note the occurrence of modes other than
the large-scale low-frequency ones with really close fre-
quencies. In our opinion, they result from a combina-
tion of large-scale low-frequency modes with higher
meridional wavenumbers; indeed, the latter have very

similar frequencies at small Bu, but are more heavily
damped with no barotropic flow. When it is present, the
barotropic flow couples them to the meridionally grav-
est ones. This coupling actually occurs between all
modes, but is more efficient when modes are of com-
parable frequencies. For example, let us focus on the
two couples of modes near the frequencies 2 X 27 and
3 X 2 for o/, = 1/2 (Fig. 4). Their occurrence likely
results from a coupling between original modes differ-
ing by their meridional wavenumbers; these modes
form a quasi-degenerate spectrum for small Bu in the
inviscid case. Moreover, the faster (slower) mode of the
couple coincides with a stronger signal in the southern
(northern) part of the basin where it is accelerated
(slowed) by the barotropic flow.

This process exhibits similarities with the “bouncing”
of the shadow modes discussed in SCO3, although we
cannot here strictly follow an eigenmode and its asso-
ciated eigenvalue through varying forcing. Like the
bouncing, the coupling occurs when two basin modes
with consecutive wavenumbers converge to the same
eigenvalue at increasing forcing: this transition happens
when the lower-order eigenmode meridional wavenum-
ber shifts along the western boundary.

For higher forcing o > «,, the basin modes are de-
formed by the mean flow such that they are completely
expelled from the region where Rossby waves cannot
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F1G. 3. Low-frequency Rossby basin modes for weak barotropic flow a/a. = 0.25. Only one phase of each
oscillatory mode is shown. Axes are longitude and latitude in nondimensional units. Note that the exclusion zone

grows with the zonal wavenumber.

propagate westward (Fig. 5). Note that the modes with
higher zonal wavenumbers are expelled from a larger
part of the domain: It is expected that higher-order
modes are more dispersive; thus the corresponding
baroclinic Rossby waves velocity is weaker and the
modes are arrested earlier, as above, but this effect
seems here independent of the Burger number as it
tends to zero (as suggested by an anonymous reviewer).
These considerations made us propose the following
alternative. The dissipation scale is a function of the
friction coefficient only: k,; > v/Bu. The frequency w of
the mode enforces a relation between the wavenumber
k and the local background potential vorticity gradient
(B — U) through the dispersion equation all along the
wave propagation, from the eastern boundary (where k
= k, function of w, and U = 0) to the region where it
vanishes through dissipation (where k = k, and U > 0).
Hence the larger k, is, the weaker U the wave can
sustain before being dissipated and the farther eastward
its propagation is arrested. A simple analogy can be

made in one dimension for the nondispersive inviscid
dispersion relation: —iw¢p = —a(x — x,)d.¢d, where x, is
the abscissa of the separatrix and a measures the inten-
sity of the circulation such that B — U = a(x — x,). The
analytical solution is exp [i(w/a) In(x — x,)] and shows
very clearly the increase of the wavenumber as the
wave propagates westward toward the separatrix. For
modes with higher frequency w, these shorter scales
develop farther away from the separatrix; in the com-
plete solution, they would be undoubtedly heavily
damped by the dissipation, expelling the associated
mode from larger regions around the pool.

Spydell and Cessi (2003) found similar modes
(named shadow modes) with main differences in the
western part of the basin and enhanced oscillations in
the vicinity of the critical line consisting of the pool
frontier. Such differences may result from their numeri-
cal method that enhances the resolution close to the
domain boundaries, but remains maladjusted for the
pool frontier (it is difficult to compare the resolution in
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Fi1G. 4. Coupling of quasi-degenerate modes with frequencies around 44 and 67 for e/, = 1/2. Only one phase
of each mode is shown. Axes are longitude and latitude in nondimensional units. Note the intensification in the
northwestern (southwestern) part for the lowest (highest) frequency mode.

the domain interior since the number of Jacobi poly-
nomials used in their study is not provided).

b. Recirculating pool modes

When the condition (33) for the existence of a recir-
culating pool is fulfilled, that is, for sufficiently strong
forcing, new modes with lower frequencies appear in
addition to the deformed Rossby basin modes, as
shown in Fig. 6. In Fig. 7 the different types of modes
are individuated for o/, = 2.

Oscillating recirculating modes appear when a recir-
culation gyre is formed. They consist of advection-
dominated waves trapped within the pool where they
propagate along closed contours of potential vorticity.
In analogy with Rossby basin modes, they can be in-
dexed by their wavenumbers by considering, now, the
azimuthal and radial wavenumbers inferred from mode
envelope |¢,|. For a given azimuthal wavenumber, the
mode period is increasing with higher radial wavenum-
ber since dispersion acts as a decelerator. Furthermore,

Fig. 8 shows that for azimuthal wavenumber 2, the
mode period is about the divisor of the first azimuthal
mode.

Several computations in the double gyre case (not
shown) highlighted the occurrence of the same recircu-
lating modes in each gyre, up to a change of sign pro-
ducing symmetric and antisymmetric recirculating
modes.

By neglecting the dispersive terms in (44), the baro-
clinic mode behaves like a passive tracer advected by an
inviscid flow with streamfunction ags,, + By. We nu-
merically checked that a particle near the center of the
gyre is more rapidly advected than at the edge. Thus,
evaluating the time spent by a particle to recirculate at
the gyre center yields the requested time scale. The
aforementioned time can be decomposed into two parts
as a quasi-instantaneous travel in the western boundary
current (considered infinitely thin and fast) and the
time spent in a semicircular trajectory in the gyre. The
latter can be evaluated as 7/({/2), where ¢ is the vorticity
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FiG. 5. Low-frequency large-scale Rossby basin modes arrested by the mean flow in the northwestern region of
the basin for @/a, = 1.5. Only one phase of each mode is shown. The zero contour line indicates the limit of the
closed geostrophic contours pool. Axes are longitude and latitude in nondimensional units.

at the gyre center (and thus ¢/2 is the rotation rate). The
gyre center coordinates are easily computed:

r Br

x.=0 and y. = —arccos (55)
and yield the value of the vorticity:
5 — o Br
= Vi(ay o + BY)|(xC, yeo) 7 T am
am’ . a. o (56)
=— -—=—Vx,.
A" a 2 .

The period of the lower recirculating mode can, thus,
be approximated as

217 _ 27
am\/1 — a/a aﬂ'\/x_,.

At least for sufficiently weak forcing, their frequencies
thus lie outside the range of Rossby basin modes and

(57)

T,,=

are smaller than the smallest basin-mode frequency. A
stronger forcing elevates the frequency of recirculating
modes. The spectra of basin and recirculating modes
may overlap: the resulting modes exhibit a signal both
in the recirculation gyre and in the eastern part of the
basin. Figure 9 illustrates these modes in the double-
gyre case.

For the lowest friction achieved (a higher resolution
would have enabled us to use a lower friction, but re-
quires unrealistic computer resources), the recirculat-
ing modes are restricted to the closed contour pool and
their influence in the basin interior is very limited (vice
versa the deformed Rossby basin modes have very little
influence in the pool interior). However, increase of the
friction coefficient causes leaking of the recirculating
modes into the basin interior through a first lobe across
the pool frontier (Fig. 10); at the highest friction used,
a second, but opposite, lobe even occurs. Conversely
the deformed basin modes leak into the interior of the
pool until the frictional boundary layer grows across the
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F1G. 8. The least damped low-frequency recirculating modes patterns for o/, = 2. Real and imaginary parts of
mode 1 X 1 are provided to show the clockwise propagation in the closed geostrophic contours pool, but only one
phase of models 1 X 2 and 2 X 1. Axes are longitude and latitude in nondimensional units.

whole pool. Figure 11 highlights the same behavior
when the Burger number is increased for a fixed fric-
tion coefficient.

On the other hand, SC03 showed shadow modes and
oscillatory pool modes both significantly leaking in the
opposite region. This is not surprising given the limits
of their numerical method with respect to the resolu-
tion across the separatrix (as discussed previously)
where the smallest scales precisely develop.

Last, the mass-conserving boundary condition has
little influence on the damping rate of these modes in
contrast with the deformed Rossby basin modes (Cessi
and Primeau 2001): their signature is very small on the
(western part of the northern) boundary, as well as on
the separatrix and rest of the basin outside the pool.

¢. Stationary pool modes

In addition to the oscillatory modes, stationary
modes do exist under the same conditions as above.
They realize an exact local balance between mean-flow

eastward advection, Rossby wave westward propaga-
tion, and diffusion; this can only hold within the closed-
contour pool. In the inviscid limit they satisfy

J(d;, %,o + By) =0. (58)

Thus, a family of real valued functions {f;},.n exists
such that

¢b; = fi@bt,o +By), ieN. (59)

Even though these modes have no equivalent in the
closed basin because of the vanishing zonal velocity on
the meridional boundaries, they are the analog of the
stationary zonal flow solution in a zonal periodic canal:
in both cases their streamfunctions are function of po-
tential vorticity only. They can be seen as oscillating
pool modes with a zero azimuthal wavenumber.

Figure 12 illustrates the large-scale least-damped sta-
tionary modes, indexed by their number of maxima,
when a = 2«
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F1G. 9. Two mixed recirculating/classical Rossby modes patterns for a/a,. = 4 in the double-gyre case. Only one
phase of each mode is shown. Axes are longitude and latitude in nondimensional units.

The stationary pool modes form a base for the op-
erator Q 'Tkernel. Each stationary pool mode (¢;) is
associated with a function (f;) of potential vorticity
only. These functions are a reminiscence of the degen-
eracy of the forced solution (39) where the function fis
undetermined. Equation (51) shows they provide a
natural base for decomposing the function f = X,_
2B0(0’ la tz)fi'

In the inviscid limit, these modes are not damped (on
time #,), and we expect their amplitude evolution (on
time t,) to result from the higher-order dynamics (i.e.,
including baroclinic instability and dissipation). It
would then be interesting to compute their equilibrium
amplitude and compare it with the solution by Young
and Rhines (1982).

By varying dissipation, Spydell and Cessi (2003) sug-
gested a potential connection between the deformed
basin modes (their shadow modes) and the stationary
pool modes: in the inviscid limit, the qualitative change

of the geostrophic contours topology may better ex-
plain the emergence of these modes.

6. Discussion and conclusions

We studied the quasigeostrophic baroclinic mode
evolution equation in the presence of a steady barotro-
pic flow by using an asymptotic analysis with the Burger
number as small parameter. We demonstrated that the
modes are neutral at the first order of the expansion (in
the inviscid case) and underlined the role of dispersive
terms to satisfy the boundary conditions. In contrast
with previous studies, this was obtained through a well-
posed problem requiring no dissipation parameteriza-
tion at this order of the expansion. We then solved the
equation numerically (with some necessary dissipation,
at least for realistically small Burger number) and iden-
tified three types of low-frequency, large-scale modes:
the classical Rossby basin modes deformed by the mean
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flow (shadow modes in SC03), and stationary and re-
circulating pool modes depending on the existence of a
recirculating pool where baroclinic waves are arrested
by the mean flow. Under strong enough forcing, recir-
culating pool modes could resonate with the Rossby
basin modes.

In the inviscid limit, the different oscillating modes
can be seen as the result of coupling of the classical
basin modes with different meridional wavenumbers by
the barotropic advection. By continuously increasing its
intensity, the spectrum of the modes is continuously
modified. Further to a qualitative change in the geo-
strophic contours topology through the occurrence of
closed geostrophic contours, northwestern intensified
modes become recirculating pool modes, and the sta-
tionary pool modes arise as a new class of modes. We
may conjecture that the necessarily continuous evolu-
tion of the modes spectrum would allow new modes to
appear only on its edge, that is, at zero frequency.

In our numerical solutions, dissipation scales remain
larger than the dispersive scale (Rossby radius of de-

formation) and friction controls the modes damping
rate, in contrast with SCO03. If we could reduce the dis-
sipation scale to actually resolve the deformation ra-
dius, we would expect the small-scale, low-frequency
Rossby waves to appear in the mode solution (and al-
low the boundary condition to be satisfied even in the
inviscid limit). Indeed, we verified it by increasing the
Rossby radius of deformation (Bu = 10~2) and found
the resulting inviscid eigenmodes to be actually neutral.

Moreover, the oscillating trapped modes achieve the
lowest frequency (and damping rate) for moderate re-
circulating gyre(s). They propagate along closed geo-
strophic contours, like the basin Rossby modes on con-
stant potential vorticity contours, with no need of reini-
tiation of baroclinic waves from the western to the
eastern boundary through rapid mass adjustment pro-
cesses. Their frequency is, thus, rationalized through
westward Rossby wave propagation (B effect) dominat-
ing in the southern half of the pool and eastward ad-
vection by the barotropic flow dominating in the north-
ern half. For the lowest friction used, these modes have
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no signature outside the pool, but their structure leaks
into the basin interior when the friction coefficient or
the Burger number is increased.

Although the model used here considers two layers
spanning the whole water depth, a more appropriate
setting would be to consider two active layers on top of
a resting abyss. Values of o/« suggest, here, very lim-
ited recirculating gyres, whereas pools of homogenized
potential vorticity are expected in the ocean. Such a
reduced-gravity, two-layer model is now under investi-
gation.

These basin modes are possible vectors of interan-
nual variability. White noise atmospheric forcing is a
candidate for exciting these large-scale weak damped
modes (Cessi and Primeau 2001), but they could also
arise from instability of the mean flow resulting from a
stationary wind forcing (Dijkstra 2000). Under a strong
enough wind forcing, Nauw and Dijkstra (2001) showed
the emergence of a low-frequency, unstable baroclinic
gyre mode very similar to the recirculating pool mode
exposed here. Direct extension of the present study
could provide an analytical framework to such instabili-
ties by proceeding to the next order of the expansion,
like in the barotropic case (Ben Jelloul and Huck 2003).
Indeed, at the order considered here, the energy is
mainly potential and conserved, which prevents the de-
velopment of baroclinic instability. Proceeding to the
next order should provide amplitude equations for ev-
ery mode and analytical expressions for their growth
rate. Stability criteria could then be derived for both
stationary and oscillatory modes.

Unstable modes can be fed by meridional baroclinic
shear of the mean flow (Pedlosky 2002) or induce po-
tentially unstable meridional currents. The advecting
role of the barotropic mean flow, like the latitude varia-
tion of the B parameter (J. H. LaCasce and J. Pedlosky
2003, personal communication), accelerates the wave
front and thus produces a more zonal structure in the
southern part of the basin. This may have a stabilizing
effect in agreement with the observations of a long
Rossby waves signature mainly south of the subtropical
gyre (Chelton and Schlax 1996). On the other hand,
LaCasce and Pedlosky (2004) showed that slow basin
modes are baroclinically unstable and may have great
difficulty crossing the basin in midlatitudes, which lim-
its their coherent propagation to tropical regions.

However, the wind-driven circulation is better repre-
sented in a reduced-gravity, two-layer model than the
one used here: Baroclinic instability through potential
energy transfer from the stationary flow to the eventu-
ally unstable modes would then be more important,
whether this feeds the baroclinic basin modes and allow
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them to grow (Colin de Verdiere and Huck 1999) or
destabilizes them into smaller scales. This is left for
future investigations.
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