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ABSTRACT

The selection mechanisms of Rossby basin modes are investigated in the reduced-gravity quasigeostrophic
framework. The linear solution of the wind-driven circulation is decomposed in a steady forced–dissipated
solution and a time-dependent component. The steady solution consists in a classical Sverdrup flow dissipated
in a thin western boundary layer. The time-dependent solution is a sum of Rossby basin modes with arbitrary
amplitudes. The effect of the nonlinear term is handled through a weakly nonlinear analysis providing a set of
evolution equations for the mode amplitudes. It is shown both analytically (infinite Burger number) and nu-
merically (finite Burger number) that mode stability is related to the gyre configuration. For cyclonic or anti-
cyclonic single gyres, all basin modes are neutral. In the traditional (reversed) double-gyre case, large-scale
basin modes are damped (unstable). Pure basin-mode interactions yield triads with cycling energy and subhar-
monic instabilities. The latter provide a potential mechanism for spectral reddening.

1. Introduction

Historical oceanic data analysis (Kushnir 1994; Mann
et al. 1998; and many others) provides evidence of in-
terannual to interdecadal variability that is also found
in coupled (Delworth et al. 1993) and ocean (Greatbatch
and Zhang 1995; Colin de Verdière and Huck 1999;
Delworth and Greatbatch 2000) general circulation
models. Because of their global spatial pattern and their
decadal timescales, baroclinic Rossby basin modes sup-
ply a plausible explanation for these variability signals:
these are westward-propagating Rossby waves reini-
tiated at the eastern boundary through rapid Kelvin
wave adjustment processes.

In the inviscid case, all basin modes are equally neu-
tral independent of their spatial scale in the absence of
a mean circulation. Cessi and Primeau (2001) argue that
stochastic (white noise) atmospheric forcing equally ex-
cites basin modes but only the low-frequency part of
the spectrum emerges because of the dissipation: low-
frequency modes are the large-scale modes that are less
dissipated and thus more resonant.

Adopting a dynamical system approach of the wind-
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driven circulation, Dijkstra (2000), among others, shows
that basin modes emerge through a Hopf bifurcation of
the steady circulation when the dissipation to stationary
forcing ratio is lowered. Unstable modes fed by the
mean flow appear to be an alternative candidate mech-
anism for the low-frequency variability. Our aim is to
provide some analytical exploration of mode selection
through this type of mechanism.

For this purpose, we apply standard nonlinear physics
techniques to investigate the nonlinear interaction in-
volving basin modes and the wind-driven circulation.
We treat the simple academic case of a quasigeostrophic
(QG) homogeneous reduced-gravity ocean forced by a
time-independent wind stress in a closed basin (section
2). Actually, more than one active layer is necessary for
a better description of the wind-driven ocean circulation.
Here we restrict ourselves to the one-layer case to assess
the suitability of the nonlinear techniques that we use
and postpone examination of more realistic multilayer
model to future work. Furthermore, this is a simple way
to inhibit energetic mesoscale baroclinic instability.

Following a weakly nonlinear expansion, we are able
to decompose the flow in a sum of a steady component
verifying the Sverdrup balance and a series of normal
basin modes whose amplitudes remain arbitrary at this
first stage of the expansion (section 3). Analytical so-
lutions are available in the infinite Burger number limit
(Longuet-Higgins 1964; Pedlosky 1987) but are com-
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puted numerically otherwise, with emphasis on weak
dissipation to promote the dispersion term, in contrast
to Cessi and Primeau (2001). The nonlinear interactions
are investigated through amplitude equations, which are
ordinary differential equations resulting from resonance
elimination at the next order of the expansion (sections
4 and 5). Both basin-mode/steady flow and multimodal
interactions will be addressed. Interesting differences
between interactions with single and double gyres are
found. Nonlinear cubic saturation is briefly evoked in
section 6, before we conclude and discuss the principal
results of this study (section 7).

2. Formulation

As a simple model of the upper-ocean circulation in
a closed basin, we consider the reduced-gravity quasi-
geostrophic potential vorticity equation. The forcing is
provided by the curl of the wind stress t, and the
dissipation F is, for now, arbitrary. The evolution equa-
tion for the streamfunction c (m2 s21) is

2 22 2] (¹ c 2 R c) 1 b] c 1 J(c, ¹ c)t d x

215 (r H ) curlt 1 F, (1)0

where Rd 5 / f 0 is the baroclinic Rossby radius ofÏg9H
deformation, g9 is the reduced-gravity parameter, H is the
upper-layer thickness, r0 is the seawater density, f 0 is the
local value of the Coriolis parameter, and b is its merid-
ional gradient. Using the following adimensionalization,

21(x, y) → L (x, y), t → (bL ) t,x x

21c → t (r Hb) c, (2)0 0

where Lx is the zonal width of the basin, the nondi-
mensional quasigeostrophic evolution equation reads

2 21 2] (¹ c 2 Bu c) 1 b] c 1 eJ(c, ¹ c) 5 W 1 F,t x E

(3)

where the Ekman pumping WE is a function with max-
imum amplitude of 1 and F are the weak dissipative
processes. Additional nondimensional parameters are
the Burger number Bu and a small parameter e K 1
controlling the inertial nonlinearities:

2R td 0Bu 5 and e 5 . (4)
2 2 3L r Hb Lx 0 x

The nondimensional parameter b 5 O(1) is kept to track
the origin of the term involved in the algebra of the
following sections. No normal flow at the boundaries
and mass conservation constraint are used (McWilliams
1977; Flierl 1977):

∀x ∈ ]D and c(x) 5 c (t),b

such that

dx dy c 5 0. (5)EE
D

The spatial domain of integration D is rectangular with
an aspect ratio denoted by r 5 Ly/Lx. This mass-con-
serving condition (vs the traditional but incorrect c 5
0 boundary condition) is crucial to the existence of
weakly damped large-scale modes in the presence of
dissipation (Cessi and Primeau 2001). However, the tra-
ditional boundary condition is correct in the particular
case of infinite Burger number in which the mass-con-
serving condition is relaxed.

We solve this equation by a weakly nonlinear expan-
sion (Nayfeh 1993) for c of the form

2c 5 c 1 ec 1 e c 1 · · · ,0 1 2 (6)

assuming a multiple-timescale expansion
2] 5 ] 1 e] 1 e ] 1 · · · .t t t t0 1 2

(7)

3. Rossby basin modes on a background
stationary Sverdrup flow

a. Stationary solution

Averaging the first-order evolution equation yields
the steady-state solution

b] c 5 W 1 F,x 0 E (8)

where the overbar denotes averaging over all timescales
ti. The solution is composed of an inviscid Sverdrup
interior circulation and a thin western boundary current
where dissipation is active. Some friction, whatever its
type, is needed to dissipate the potential vorticity input:
this occurs in a western boundary layer the thickness of
which is controlled by the dissipation coefficient. For
instance, for Rayleigh friction (F 5 2m¹2c), Stommel
boundary layer width scales as m/b, while for Laplacian
friction (F 5 A¹4c), a Munk boundary layer width scales
as (A/b)(1/3). In the following, we assume, except when
specifically mentioned, that dissipation is strong enough
to have a western boundary current that is well described
by a linear solution. This condition is equivalent to having
a boundary current width larger than the inertial length
(U/b)1/2, where U 5 t0(r0HbLx)21 is a measure of the
Sverdrup flow strength (Pedlosky 1996). Moreover, the
basin zonal width is assumed to be sufficiently large in
comparison with the western boundary layer thickness.
These two theoretical assumptions mean that our Sver-
drup circulation can always be closed with a linear west-
ern boundary current for any arbitrary weak dissipation
by just requiring sufficently large L and/or sufficiently
small t0. Using these assumptions one can write

1

21 21y 5 ] c 5 b W 2 b d(x) dx W , (9)0 x 0 E E E

0

where d is the Dirac distribution and represents the
strongly localized western boundary current. The
streamfunction is, thus,

21c 5 b W [x 2 H(x)],0 E (10)
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where H(x) is the Heaviside function. Note that this
singular solution can be obtained by taking the limit of
zero dissipation in the classical expressions of Stommel
and Munk boundary currents (e.g., Pedlosky 1996, 36–
42).

b. Basin modes

Since we have seen in the previous section that dis-
sipation can be taken as small as possible, provided the
basin scale is sufficiently large, we can neglect it at this
order. The time-dependent component of (3) is then

2 21L c̃ 5 ] (¹ c̃ 2 Bu c̃ ) 1 b] c̃ 5 0,0 t 0 0 x 00
(11)

which solutions are the Rossby basin modes. Neglecting
the dissipation at this order of the expansion results in
useful properties that would be absent in the presence
of dissipation. Moreover, inserting dissipation at this
order would lead us to rapidly, that is, over rapid time-
scale t0, damped modes. We provide in the following a
mathematical formulation suitable for the weakly non-
linear analysis conducted in the next sections.

Equation (11) can be rewritten
21] c̃ 5 Ac̃ 5 2Q b] c̃ ,t 0 0 x 00

(12)

where the linear operators Q and A are defined by
2 21 21Q f 5 ¹ f 2 Bu f and A 5 2Q b] .x (13)

Defining

1
^ f | g& 5 2 dx dy f Q gQ EE2r D

1
215 dx dy(= f · =g 1 Bu fg)EE2r D

1
1 ds f (n · =g) (14)R2r

dD

provides a scalar product for the space of real functions
verifying (5) if the last contour integral is zero. The
streamfunction being a function of time only on the
boundaries, this contour integral can be rewritten

ds f (n · =g) 5 f ds(n · =g)R R
]D ]D

5 f ds u , (15)gR
]D

where ug 5 (2]yg, ]xg): this last circulation vanishes
for every solution of (11) as pointed out by Pedlosky
(1987, p. 145).

Thus in the space of zero circulation streamfunction,
the operator A is anti-Hermitian for the metric defined
by the scalar product (14); that is,

†^ f | Ag& 5 ^A f | g& 5 2^A f | g& ,Q Q Q (16)

where the dagger denotes adjoint operators. The oper-
ator A is thus diagonal in a base of orthonormal complex
eigenvectors FV with pure imaginary eigenvalues iV
composing a discrete spectrum verifying

] F 5 AF 5 iVF .t V V V0
(17)

We can thus conclude about the purely oscillating
nature of the basin modes on timescale t0 and write the
time-dependent solution

iVt0c̃ 5 [A (V, t , . . .)F (x, y)e 1 c.c.], (18)O0 0 1 V
V∈S

A

where c.c. denotes the complex conjugate of the first
term in the bracket and SA is the spectrum of positive
(or negative) discrete frequencies.

Since 0 is a real function, the relation A0(2V) 5c̃
(V) holds and the sum is thus restricted to positiveA*0

V. The eigenmodes FV verify the linear relation

2 21LF 5 iV(¹ F 2 Bu F ) 1 b] F 5 0,V V V x V (19)

which is strictly equivalent to (17); they are uniquely
defined provided the following energy normalization:

1
2 21 2dx dy(|=F | 1 Bu |F | ) 5 1. (20)EE V V2r D

The time-dependent vectors (FVe 1 c.c.) thus formiVt0

an orthonormal base of the kernel of the anti-Hermitian
operator L for the space–(fast) time scalar product

T01 1
^ f | g& 5 lim dt dx dy fg. (21)E 0 EE2r TT →` 00 0 D

This property will be used in section 4 to obtain the
slow time evolution equations for the amplitude A0(V,
t1).

1) NO-SURFACE-DEVIATION CASE

The simple case of no surface deviation (rigid lid),
that is, Bu21 5 0, is treated in the Longuet-Higgins
(1964) classical paper and Pedlosky (1987) textbook.
The analytical solution is

npy
ibx /2VF 5 D e sin(mpx) sin , (22a)V V 1 2r

with

4V b
D 5 and V 5 . (22b)V

2 2 22b 2pÏm 1 n r

2) GENERAL CASE

In the general case with finite Burger number, we
proceed by numerically computing the modes. We solve
the generalized eigenvalue problem arising after finite
differentiating (19), like Cessi and Primeau (2001):
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TABLE 1. Basin modes’ period as a function of their spatial structure for different values of the Burger number Bu (r 5 1). Wavenumbers
are indicated using the scheme (zonal 3 meridional ) by counting the maxima of the streamfunction modulus (envelope) |FV|, providing a
direct connection with the frictionless infinite Burger analytical solution. The periods corresponding to these modes are also indicated: the
time unit is the time needed for the largest Rossby wave to cross the basin, that is; TR 5 Lx /(b ). For the temporal scaling used in the text,2Rd

periods must be multiplied by Bu21. Values are given for the lowest achievable dissipation (d 5 1024 to 1025) given our limited 100 3 100
resolution. Convergence for the eigenvalues is obtained up to 1023 to 1024.

Bu ` 1 1022 1024 Bu ` 1 1022

1 3 1
2 3 1
3 3 1
4 3 1

55.8
88.3

124.8
162.8

57.6
90.3

129.5
167.1

1.372
1.540
1.715
1.980

1.033
0.522
0.355
0.274

1 3 2
2 3 2
3 3 2
4 3 2

88.3
111.7
142.3
176.6

90.6
116.2
146.3
182.1

1.54
1.69
1.91
2.29

2 21iV(¹ F 2 Bu F )V V

2 2 215 2b] F 1 d¹ (¹ F 2 Bu F ), (23)x V V V

using Arnoldi’s method provided in ARPACK (Lehouck
et al. 1998). Downgradient potential vorticity eddy dif-
fusion is needed here to avoid gridpoint structures and
to numerically isolate large-scale modes.

The transition from two asymptotic regimes depend-
ing on the value of the Burger number clearly appears
in Table 1. These two regimes depend on the ratio of
dispersive to advective terms, as shown by a simple
scaling of (23):

• high Bu: low-frequency modes are small-scale modes
(V } 1/ ;2 22 2Ïm 1 r n )

• small Bu: low-frequency modes are large-scale modes
(V } m), as noted by Cessi and Primeau (2001).

This latter case is the most oceanographically relevant
since thermocline evolution is well captured by the first
baroclinic mode for which Bu K 1. A few of these
modes are represented in Fig. 1: in comparison with the
infinite Burger number analytical solution, their merid-
ional structure is primarily uniform except for north and
south boundary layers. For values of our parameters

typical of the North Atlantic and Pacific, these modes
have periods in the interannual to interdecadal range.

4. Nonlinear instability mechanism

a. Amplitude equation

We proceed to the next order in the weakly nonlinear
expansion to include the nonlinear terms in (3) that were
neglected at first order. This provides the slow evolution
equation for the amplitudes of the basin modes.

At O(e), the evolution equation reads
2Lc 5 2[] Q c 1 J(c , ¹ c )].1 t 0 0 01

(24)

Amplitude equations are obtained as a solvability con-
dition for (24): by left multiplication of both sides of
(24) by the elements of the kernel of L † 5 2L and
recalling (19), we get

†^F | Lc & 5 ^L F | c & 5 2^LF | c & 5 0V 1 V 1 V 1

25 2^F | ] Q c 1 J(c , ¹ c )&. (25)V t 0 0 01

Then we expand c0 5 0 1 0 using (18). The scalarc c̃
products are evaluated using the normalization condi-
tion (20) and the identity A0(2V) 5 (V). For V 5A*0
V0, this prescription yields

21 2*] A (V ) 5 d A (V )A (V )(2r) dx dy F J(F , ¹ F )Ot 0 0 V ,V 1V 0 1 0 2 EE V V V1 0 1 2 0 1 2[ ]V ,V ∈S1 2 DA

21 2 2*1 A (V )(2r) dx dy F [J(F , ¹ c ) 1 J(c , ¹ F )], (26)0 0 EE V V 0 0 V0 0 0

D

where d is the Kronecker symbol. Three types of ‘‘three
wave’’ resonance can thus occur:

• self-interaction of a mode via the mean flow (V0 1
0 5 V0),

• triad of distinct modes (V1 1 V2 5 V0),
• subharmonic interaction (V1 1 V1 5 V0).

Each case will now be examined individually. The first
case will be treated at length in the following, while the

two others are postponed to the study of the interaction
between distinct basin modes discussed in the next sec-
tions.

b. Basin mode: Sverdrup flow interaction

We first derive an amplitude evolution equation con-
sidering only one mode interacting with the stationary
mean flow:
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] A (V) 5 a A (V),t 0 1 01
(27)

where the complex coefficient a1 reads from (26):

a 5 a9 1 a01 1 1

21 2 *5 (2r) dx dy[¹ c J(F , F )EE 0 V V

D

2 *1 c J(¹ F , F )]. (28)0 V V

The imaginary part of the coefficient a1 corresponds to
a small correction to the mode frequency due to its
interaction with the stationary flow. The real part is the
growth rate of the mode and indicates the mode stability
[R(a1) # 0] or instability [R(a1) . 0].

The first term in (28) is purely imaginary. Using (19),
the second one is rewritten

21 *a0 5 i(2rV) dx dy c J(b] F , F )1 EE 0 x V V

D

21 *1 (2rBu) dx dy c J(F , F )EE 0 V V

D

21 *5 i(2rV) dx dy c J(b] F , F )EE 0 x V V

D

21 *1 (2rBu) dx dy c J(F , F )EE 0 V V

D

21 *2 i(2rV) dx dy b] c J(F , F ), (29)EE x 0 V V

D

where the last expression was achieved using integration
by parts. The complex number a1 has no real part unless
the following integral is nonzero:

2R(a ) 5 a0 1 c.c.1 1

21 *5 2i(2rV) dx dy b] c J(F , F ). (30)EE x 0 V V

D

c. No-surface-deviation case

We evaluate the Jacobian in (30) using the analytical
expression for the modes computed in the case of no
surface deviation (22a):

2ibnpD 2npyV*J(F , F ) 5 (1 2 cos2mpx) sin . (31)V V 4rV r

Assuming a forcing WE(y) 5 b]x 0 independent of x,c
the growth rate is then

a 1 c.c.1R(a ) 51 2
r2bnpD 2npyV5 dy W (y) sin . (32)E E2 216V r r0

The last expression provides indication on the nature of
the instability. It appears that potentially growing modes
have a meridional scale 2 times as large as the mean
Sverdrup flow. We examine in the following the two
classical cases of the single and double gyres.

1) SINGLE GYRE

Considering a typical single-gyre forcing WE 5 W0

sinpy/r, with W0 . 0 (W0 , 0) for a subpolar cyclonic
(subtropical anticyclonic) gyre, one can easily compute
a1 5 0. The modes are thus marginally stable in the
single-gyre case. More generally, all forcings that are
even functions of the latitude deviation from the mid-
basin latitude r/2 are neutral. Only odd contributions
may have destabilizing effects. Moreover I(a1) 5 0
such that no frequency shifts, due to the interaction with
the mean flow, are experienced by the modes for the
symmetric single gyre considered here. Note that in
practice neutral modes are damped by the weak dissi-
pative processes.

2) DOUBLE GYRE

Now, considering a traditional double-gyre symmet-
ric forcing WE 5 2W0 sin(2py/r), W0 . 0, the growth
rate is then

2bpD W d W pV 0 n,1 0R(a ) 5 2 5 2 d . (33)1 n,1232rV 2rb

The basin modes with largest latitudinal extension (n 5
1) are thus damped but all other modes are marginally
stable. However, for W0 , 0, that is, an anticyclonic
subpolar gyre north of a cyclonic subtropical gyre, these
modes become unstable. This latter case presents a lat-
itudinal gradient of relative potential vorticity opposed
to the planetary gradient (Fig. 2). These opposing gra-
dients can only ‘‘be seen’’ by the largest basin modes
in latitude.

3) ROLE OF A FINITE-WIDTH WESTERN BOUNDARY

CURRENT

So far we have crudely represented the western
boundary current by a delta function in the expression
of the meridional velocity in (9). It appears that the latter
plays no role in determining the mode stability since its
contribution is proportional to

1

dx d(x)(1 2 cos2mpx) 5 1 2 cos0 5 0. (34)E
0

We can allow a finite width by changing the delta
function into f (D21x)/D where the function f verifying

du f (u) 5 1 reflects the boundary current structure`#0

and D is its width. For example, the Stommel solution
corresponds to a function f (D21x) 5 e2 |x | /D, where D
5 m/b and m is the bottom friction coefficient.
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FIG. 1. Streamfunction for reduced-gravity basin modes for Bu 5 1024 (r 5 1, d 5 1023).
Zonal wavenumbers m 5 1, 2, and 3 are represented for meridional wavenumber n 5 1. Their
periods are approximately TR/m, where TR 5 Lx/(b ) is the dimensional time needed by the2Rd

largest Rossby wave to cross the basin (this is about 10 years with typical values for the North
Atlantic).

For a finite-width western boundary current, the last
term reads

1 f (x/D)
dx (1 2 cos2mpx), (35)E D0

and yields for a Stommel western boundary current

1

21 2x /Ddx D e (1 2 cos2mpx)E
0

212D1 2 e
5 1 2 , (36)212 2 2 2D1 1 4D m p e

The contribution of the western boundary current term
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FIG. 2. Reversed double gyre leading to large-scale mode insta-
bility. Plus and minus denote the sign of the relative vorticity of the
Sverdrup gyres.

TABLE 2. Growth rate for basin modes interacting with idealized
single subpolar gyre and reversed double gyre (r 5 1). The time unit
is the time needed for the largest Rossby wave to cross the basin, TR

5 Lx /(b ). For the time scaling used in the text, growth rate must2Rd

be multiplied by Bu21. Values are given for the lowest achievable
friction given our limited 100 3 100 resolution.

Gyre type

Bu

Double reversed

` 1 1022

Single subpolar

` 1 1022

1 3 1
1 3 2
2 3 1
3 3 1

p/2
0

p/2
p/2

1.500
0.054
1.560
1.630

1.538
0.012
1.560
1.400

0
0
0
0

20.010
20.056
20.011
20.012

20.010
20.057
20.011
20.010

can thus be as small as needed by requiring a sufficiently
thin current, that is, D K 1 for any fixed zonal wave-
number m. Now for D fixed to a finite value, one can
evaluate the growth rate for the double-gyre case using
(30) and get the correction to (33):

212DW p 1 2 e0R(a ) 5 2 d . (37)1 n,1212 2 2 2D2rb 1 1 4D m p e

For small-scale modes, that is, large m, the growth rate
tends to vanish and the modes are thus quasi neutral. A
possible explanation is that the gyre alternation is op-
posed in the boundary current and the Sverdrup interior.
They thus may compensate when the small-scale basin
mode can sample the western boundary current.

d. General case

In the general case, analytical solutions for the basin
modes are missing and these can only be computed
numerically. Apart from some simple cases in which
symmetry arguments can be used, the growth rate has
to be numerically evaluated using (30).

Let us first show that the problem’s symmetries make
the quantity J(FV, ) an odd function of the latitudeF*V
deviation from the midbasin. Since the modes equation
(11) is invariant through mirror symmetry about the
midbasin longitude line y 5 r/2, if FV(x, y) is a solution,
then FV(x, r 2 y) is also a solution. Moreover, there is
no reason for the operator A to be degenerate, and so
two symmetric solutions must be linked as follows:

iVt iVt0 0F (x, y)e 1 c.c. 5 a[F (x, r 2 y)e 1 c.c.].V V

(38)

Now, using (x, y) 5 F2V(x, y) and taking the com-F*V
plex conjugate of the relation (38) yields a 5 a*. Since
the normalization condition implies | a | 5 1, we can
thus conclude that a 5 61. The eigenmodes FV(x, y)
are thus odd or even functions of the latitude deviation
from the midbasin.

1) SINGLE GYRE

We first consider forcings that are even functions of
the latitude deviation from the midbasin latitude r/2,
like the simple gyre studied above. Since J(FV, ) isF*V
an odd function of the same variable, the integral (30)
is clearly zero. This is verified numerically for several
modes and different Burger numbers as reported in Ta-
ble 2. Only odd streamfunctions may have destabilizing
effects. Moreover, no frequency shift is experienced by
the modes since a1 5 R(a1) 5 I(a1) 5 0 for the even
gyre considered here.

2) DOUBLE GYRE

For the double-gyre case, the growth rate is computed
numerically (see Table 2). These results are comparable
to those found in the no-surface-deviation case; that is,
anticyclonic (cyclonic) gyre north (south) yields unsta-
ble modes with basin scales. However, the gravest
modes are now low-frequency modes for small Bu. Note
that the exponential growths (when rescaled by the larg-
est Rossby wave basin crossing time) are close to the
one obtained with infinite Burger number frictionless
solution; that is, R(a1) 5 p/2. We did not manage to
obtain decent results for Burger numbers lower than
1022 because of our limited spatial resolution of the
eigenmodes and their alteration by the dissipation.

e. Instability and symmetry

As shown above, the stability properties of the gyres
are related to their symmetry properties. In fact, only
the nonlinearities break the symmetry WE → 2WE,
c → 2c of the linearized quasigeostrophic equation
such that opposite configurations have different stability
behavior.

A rule of thumb may be that instability develops for
Sverdrup transport with mirror-antisymmetric compo-
nents having anticyclonic gyre north of a cyclonic one.
Consider a zonal wind forcing written as a series of sine
functions:

kpy
W (y) 5 S sin . (39)OE k rk∈N
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From (30) it appears that the unstable modes are the ones
with latitudinal wavenumber n 5 k/2 whenever
Sk . 0 (only even k harmonics are potentially unstable)
for the case Bu 5 `. The unstable modes are thus 2 times
as large in latitude as the Ekman pumping. This result
can be easily extrapolated to the finite Bu case in which
the selected mode scale is approximately 2 times the scale
k21r of the potentially unstable k harmonic of the forcing.

Numerical studies for both single gyre (Sheremet et
al. 1997) and double gyre (Cessi and Ierley 1995; Dijk-
stra 2000; among others) have shown that the first in-
stability that appears in the dissipative one-layer qua-
sigeostrophic system when increasing the forcing-to-
dissipation ratio (Reynolds number) may break the mean
flow symmetry arising from a symmetric forcing. In the
double-gyre case, the pitchfork bifurcation results in
multiple nonsymmetric steady states departing from the
classical Sverdrup flow with linear Munk- or Stommel-
type boundary current.

In the single-gyre case of Sheremet et al. (1997) the
lower-branch solution, which presents a boundary layer,
is stable until some critical Reynolds number at which
Hopf bifurcations start to occur. However no basin modes
are directly involved in these instabilities, which are main-
ly due to wall-trapped modes. This result is confirmed by
our prediction. However, for larger Reynolds number these
authors found an unstable resonant mode that is mainly
an oscillatory recirculating mode whose frequency match-
es a basin-mode frequency shifted by the mean flow.

In the double-gyre case, the pitchfork bifurcation
yields two mirror-symmetric stable mean flows that are
no longer symmetric with respect to the midlatitude axis.
For higher Reynolds number these two stationary so-
lutions are unstable through Hopf bifurcation and the
unstable pattern is clearly related to basin modes (Dijk-
stra and Katsman 1997). There is no contradiction with
our prediction since the unstable basin mode has a me-
ridional wavenumber 2, while we only predicted that
basin modes with meridional wavenumber 1 are
damped. We may conjecture that the excitation of wave-
number 2 basin modes is due to the asymmetry of the
mean flow. Although we cannot evaluate numerically
the growth rate for this particular mean flow, we may
argue that, within each gyre, the potential vorticity gra-
dient related to the recirculating zone is opposed to the
planetary gradient: the unstable mode thus has the larg-
est meridional scale in each gyre. The analysis con-
ducted here tentatively rationalizes some of these results
by providing a criterion for basin-mode selection. Un-
fortunately, it is not suitable for the gyre mode insta-
bilities that several authors have found (Jiang et al.
1995; Speich et al. 1995; Dijkstra and Katsman 1997;
Simonnet and Dijkstra 2002).

In the following, it will be assumed that the forcing
does not destabilize the basin modes at this order in e.
The potential destabilizing effects, like asymmetry, will
be taken as sufficiently weak to be postponed to the next
order (section 6).

5. Basin-mode interactions

a. Basin-mode triads

1) NO-SURFACE-DEVIATION CASE

Triadic interactions are possible for basin modes with
the dispersion relation given in (22a). For example, con-
sider the modes with frequencies V(pm, pn), V(qm, qn)
and V(sm, sn), with (p, q, s) being a triplet of integers.
The resonance condition reads

1 1 1
31 5 , (p, q, s) ∈ N , (40)

p q s

which is verified for several combinations. For such tri-
adic interactions, we end up with the following system:

V ,V1 2] A (V ) 5 a A (V )A (V ), (41a)t 0 0 V 0 1 0 21 0

V ,2V0 2 *] A (V ) 5 a A (V )A (V ), and (41b)t 0 1 V 0 0 0 21 1

V ,2V0 1 *] A (V ) 5 a A (V )A (V ), (41c)t 0 2 V 0 0 0 11 2

where the are the interaction coefficients.V Vj kaV i

These triads are just a particular case of the general
Rossby wave triads since every basin mode is composed
of four Rossby waves; details can be found in Pedlosky
(1987). Both energy and enstrophy of the triad are con-
served, and the system (41) undergoes nonlinear peri-
odic oscillations.

2) GENERAL CASE

In the general case there is no reason for triads to
occur. Moreover, considering an arbitrary basin geom-
etry, triad occurrences are rather unlikely (nongeneric
resonances). However, the case of a large basin is in-
teresting because near-triadic resonance might occur
since large-scale Rossby wave frequencies are quite in-
sensitive to basin geometry (these waves do not feel the
details of the shore). Moreover, their frequencies are
multiples of 5 (Lx/b )21 (see, e.g., modes 1 3 1,21 2T RR d

2 3 1, and 3 3 1 for Bu 5 1024 in Table 1), and thus
resonance among the three largest modes may be ap-
proximately achieved. This is far beyond the scope of
this paper and will not be pursued any further.

b. Subharmonic instability

1) NO-SURFACE-DEVIATION CASE

In the case of no surface deviation, the dispersion
relation provides exact subharmonic resonances since
2V(2m, 2n) 5 V(m, n), and more generally kV(km, kn)
5 V(m, n). We will restrict ourselves to the first case
since we deal with quadratic nonlinearities. Using V0

5 2V1 5 2V we thus get
2V,2V] A (V) 5 a A (2V)A*(V),t 0 V 0 01

(42)

where the complex interaction coefficient is such that
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2V,2V 21 2 21 2* * * *a 5 (2r) dx dy F J(F , ¹ F ) 1 (2r) dx dy F J(F , ¹ F )V EE V 2V V EE V V 2V

D D

21 21 * *5 i(2r) bV dx dy F J(F , ] F ). (43)EE 2V V x V

D

Some tedious, but straightforward, algebra yields

np mp 3ib mp
23ib /4V8ibD D sin e mp cos 2 1 1 sin2V V 1 2[ ]2 2 2V 2

2V,2Va 5 2 . (44)V
29b

2 215r m p 2
21 24V

If we write A0(2V) 5 Reiu, and change the2V,2VaV

variable A0(V) to B 5 A0(V)e2iu/2 , we end up with

] B 5 RB* 2 mB,t1
(45)

where a dissipative stabilizing term is required to have
instability at nonzero R; otherwise, the trivial equilib-
rium solution B 5 0 of the last system is unstable for
every R since the eigenvalues are 6R (e.g., Fauve 1998).
Subharmonic instability is a well-known feature of qua-
dratic nonlinear system (Strogatz 1994). For the case
with no surface deviation, large-scale modes are desta-
bilized through subharmonic instability to produce
slower modes with half-scale in both zonal and merid-
ional directions [recall the resonance condition 2V(2m,
2n) 5 V(m, n)].

2) GENERAL CASE

For reduced-gravity modes with Bu . 0, the reso-
nance holds for a given mode with frequency V0 and
its subharmonic, which is 2 times as large in the zonal
direction. However, the subharmonic resonance condi-
tion is only approximately verified up to a small fre-
quency correction n 5 V0 2 2V1 ± 0 for the modes
with the largest zonal wavelengths (this discrepancy is
related to the small but nonzero dispersion effects). The
resulting amplitude equation must then include a fre-
quency correction term as follows:

] B 5 RB* 1 inB 2 mB.t1
(46)

The growth rate of a perturbation from the trivial steady
state B 5 0 is then

2 2s 5 2m 1 ÏR 2 n (47)

and may become positive for sufficiently strong R.
As an illustration, Cessi and Paparella (2001) found

in their numerical simulation of a one-layer rotating
shallow-water model (RSW) in a large basin (similar to
our Bu K 1 case), forced by a simple interactive wind
stress, a period doubling transition from mode 1 3 1
to mode 2 3 1.

However, note that in our b-plane QG model, the
basin modes must have different latitudinal structure for
subharmonic instability to develop. Indeed, the formula
of the coupling parameter , which was analytically2V,2VaV

computed for Bu 5 ` in (43) and has a similar ex-
pression in the general case, yields to 5 0 when2V,2VaV

the involved modes are 1 3 1 and 2 3 1. This can-
cellation occurs when the integrand is an odd function
of the latitude deviation from the midbasin. For ex-
ample, if the initial mode with frequency 2V is even,
the coupling parameter is zero since the Jacobian in (43)
is always odd. As a consequence, (44) yields 52V,2VaV

0 for even n.
This point seems at odds with the Cessi and Paparella

(2001) result. However, since their RSW model consid-
ers large variations of the Coriolis parameter, the speed
of the fastest Rossby waves is latitude dependent (Cessi
and Louazel 2001) and the modes are no longer sym-
metric (slanted wave fronts): therefore there is no con-
tradiction with our symmetric case. Last, note that it is
possible to include such large variations of the Coriolis
parameter in a QG-like model (A. Colin de Verdière
2002, personal communication) and perform the same
analysis as we provided here in the traditional b-plane
QG model.

c. Summary of quadratic processes

When summed up together, the individual processes
that we investigate above may lead us to the stationary
spectrum of basin modes that results from the previous
amplitude equations. An extensive study of these am-
plitude equations is far beyond the scope of this paper,
but we might qualitatively describe the energy flux.

Energy input in the time-varying component of the
system is provided by the mean flow (when unstable)
and feeds modes with scales similar to the unstable har-
monics (see section 4e). Two- and three-mode quadratic
interactions distribute energy throughout the modes. The
energy may then cycle through triads with no net energy
input nor loss. However, there is a net energy flux toward
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low frequencies through subharmonic instability. For
the case with no surface deviation (Bu 5 `), the red
part of the spectrum corresponds to modes with small
spatial scales, but for the opposite limiting case (Bu K
1) it consists in the large-scale modes. The system can
balance the net input of energy toward the low fre-
quencies through dissipative processes. Since dissipa-
tion is stronger at smaller scales, the spectrum will be
less red for Bu 5 ` as compared with Bu K 1. Nev-
ertheless dissipation is very weak in the ocean such that
mode amplitudes can be sufficiently strong and high-
order terms can no longer be neglected: higher-order
nonlinear processes may then saturate the spectrum.

6. Nonlinear saturation

In this section we study how mode amplitudes can
saturate through self interactions (cubic nonlinearities).
To shed light on the mechanism invoked in the previous
section, we examine only one unstable mode interacting
with the mean flow, while neither subharmonic insta-
bility nor triads are considered. We assume that all
sources of instability only appear at this order where
nonlinear saturation can balance them: Therefore, we
consider a mode with frequency V whose growth rate
is zero at first order (a1 5 i | a1 | ) and energy E0 5
| A0(t1) | 2 is conserved on the slow timescale t1 (i.e.,
] E0 5 0). We then focus on the slower time evolutiont1

equation of the amplitude A0, or equivalently the energy
E0, on timescale t2.

a. Nonresonant fields

To calculate the nonlinear saturation terms, we must
first complete the solution of the problem at the order
e by computing the nonresonant component of the so-
lution. The cubic nonlinear terms that we seek will arise
from the product of 0 and c1. Since no triads or sub-c̃
harmonic instabilities are assumed, a we expect contri-
butions only from c1 terms with frequencies 2V and 0
because only these terms can interact resonantly with

0 according to the resonance relations 2V 2 V 5 Vc̃
and 0 1 V 5 V; see Fauve (1998) for an example.

The following convenient notations are used for the
first correction to the streamfunction:

iVt0c 5 [A (V, t , . . .)F eO1 1 1 V
V∈S

A

i2V t01 A (2V, t , . . .)F e 1 c.c.]1 1 2V

t0
1 c 1 n.r.t., (48)1

where n.r.t. stands for nonresonant terms.
Averaging (24) gives

t t0 02b] c 5 2J(c , ¹ c ) . (49)x 1 0 0

Then expanding c0 5 0 1 0 using (18) one obtainsc c̃

2 ASb] F 5 2J(c , ¹ c ) 1 W and (50a)x 1 0 0 E1

2 *b] F 5 2[J(F , ¹ F ) 1 c.c.]x V,V* V V

21 * *5 ibV [J(F , ] F ) 2 J(F , ] F )]V x V V x V

21 *5 ibV ] J(F , F ), (50b)x V V

where has been decomposed as follows:t0c1
t0 2c 5 F 1 |A | F , (51)O1 1 0 V,V*

V∈S
A

with 1 and FV,V* being real functions.F
Note that is the asymmetric correction to the first-ASW E1

order symmetric forcing. This asymmetric contribution
to the forcing is necessary to provide a growth term in
the energy equation since we assumed that the Sverdrup
flow is stable (all the basin modes are neutral) on the
rapid timescale t0. Note that, if the first-order forcing
is an harmonic function of y like those used in previous
sections, the quadratic contribution is zero.

We also assumed that there is no subharmonic res-
onances; thus, if V is in the spectrum SA, 2V is not.
Collecting the terms proportional to e in (24) yields2iVt0

2 2(2iVQ 1 b] )A (2V)F 5 2A (V)J(F , ¹ F ).x 1 2V 0 V V (52)

The biharmonic contribution can thus be summarized
as follows:

2A (2V, t , . . .) 5 A (V) and1 1 0

21 2F 5 2L J(F , ¹ F ), (53)2V 2V V V

where the linear anti-Hermitian operator L2V is defined
by

L 5 2iVQ 1 b] .2V x (54)

b. Nonlinear amplitude equation

At O(e2), the quasigeostrophic equation (3) yields
2Lc 5 2[] Q c 1 ] Q c 1 J(c , ¹ c )2 t 0 t 1 0 12 1

21 J(c , ¹ c )]. (55)1 0

The evolution equation for the mode energy | A0(V) | 2

is obtained by two successive solvability conditions to
eliminate resonances at timescales t1 and t2. Projecting
(55) on FV using the scalar product (21), the first pre-
scription yields

22] A 1 i | a | A 2 ] A 1 b A 1 b | A | A 5 0,t 1 1 1 t 0 1 0 2 0 01 2

(56)

where the complex numbers b1 5 1 and b2 5b9 b01 1

1 1 are defined asb9 b0 b-2 2 2

21 2*b9 5 (2r) dx dy F J(F , ¹ F ), (57a)1 EE V V 1

D

21 2*b0 5 (2r) dx dy F J(F , ¹ F ), (57b)1 EE V 1 V

D



2330 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

21 2*b9 5 (2r) dx dy F J(F , ¹ F ), (57c)2 EE V V V,V*

D

21 2*b0 5 (2r) dx dy F J(F , ¹ F ), and (57d)2 EE V V,V* V

D

21 2* *b- 5 (2r) dx dy F J(F , ¹ F ). (57e)2 EE V 2V V

D

A slow evolution equation for the mode energy E0 5
| A0 | 2 is derived by summing the product of (56) by

with its complex conjugate. After integration overA*0
time t1 and some manipulation (integration by parts) one
can use (27) to eliminate A1 terms and finally obtain

2] E 5 (b 1 c.c.)E 1 (b 1 c.c.)E .t 0 1 0 2 02
(58)

We are thus led to compute the following coeffi-
cients:

(b9 1 c.c.)1

21 2*5 (2r) dx dy F J(F , ¹ F ) 1 c.c.EE V V 1

D

21 2 *5 2(2r) dx dy ¹ F J(F , F ) 1 c.c. 5 0,EE 1 V V

D

(59a)

since the complex conjugate of the last Jacobian is its
opposite and recalling that 1 is real from (51);F

(b0 1 c.c.)1

21 2*5 (2r) dx dy F J(F 1 F , ¹ F ) 1 c.c.EE V V,V* 1 V

D

21 2*5 2(2r) dx dy F J(F , ¹ F ) 1 c.c.EE 1 V V

D

21 21*5 2(2r) dx dy F J(F , Bu FEE 1 V V

D

211 biV ] F ) 1 c.c.x V

21 21 *5 i(2r) V dx dy b(] F )J(F , F ), (59b)EE x 1 V V

D

which is analogous to the growth rates computed in
section 4b at this order of the computation;

(b9 1 c.c.)2

21 2*5 (2r) dx dy F J(F , ¹ F ) 1 c.c.EE V V V,V*

D

21 2 *5 2(2r) dx dy ¹ F J(F , F ) 1 c.c. 5 0EE V,V* V V

D

(59c)

for reasons similar to those invoked for (59a);

(b0 1 c.c.)2

21 2*5 (2r) dx dy F J(F , ¹ F ) 1 c.c.EE V V,V* V

D

21 2*5 2(2r) dx dy F J(F , ¹ F ) 1 c.c.EE V,V* V V

D

21 21*5 2(2r) dx dy F J(F , Bu FEE V,V* V V

D

211 biV ] F ) 1 c.c.x V

21 21 *5 (2r) iV dx dy(b] F )J(F , F ) 5 0EE x V,V* V V

D

(59d)

using (50b) for the integration over x, which cancels
using boundary conditions; and finally

(b- 1 c.c.)2

21 2* *5 (2r) dx dy F J(F , ¹ F ) 1 c.c.EE V 2V V

D

21 2* *5 2(2r) dx dy F J(F , ¹ F ) 1 c.c.EE 2V V V

D

215 (2r) dx dy F (L F )* 1 c.c. 5 0, (59e)EE 2V 2V 2V

D

since the operator L2V is anti-Hermitian.
It appears that the growth rate given by (59b) is equiv-

alent to the previously computed O(e) growth rate (30),
purposefully postponed to the order e2. Yet, the major
concern is that there is no cubic self-saturation, because
the terms (59c–e) vanish. These terms cancel out in the
energy equation and thus the nonlinearities induce only
nonlinear frequency modulation of the form V 1 eI(a1)
1 e2I(b1) 1 e2I(b2) | A0 | 2.

Other modes, higher nonlinearities, and/or explicit
dissipative mechanisms are thus required to close the
energy budget and saturate the mode spectrum.

7. Discussion and conclusions

Using a weakly nonlinear expansion, we studied the
nonlinear interactions involving Rossby basin modes
and the mean flow for a one-layer reduced-gravity qua-
sigeostrophic model for different values of the Burger
number (Bu). Analytical calculations were performed
in the no-surface-deviation case (Bu 5 `), while the
more relevant cases (Bu K 1)were treated numerically.

We found that basin modes are unstable for particular
meridional gyre configurations associated with a single
harmonic of the zonally invariant Ekman pumping. In-
stability occurs when the gradient of relative vorticity
associated with this gyre alternation is opposed to the
planetary vorticity gradient b. The meridional scale of
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the unstable mode is then 2 times that of the Ekman
pumping. Because of its limited oceanographic rele-
vance, the reversed double-gyre case is not very popular
in the literature, and so we could not confirm our the-
oretical stability prediction. However, Colin de Verdière
(1977) reports from double-gyre laboratory experiments
on a fundamentally different stability behavior depend-
ing on gyre configuration when the nonlinearity param-
eter e becomes of order 1, which may support our result.
From isolated source–sink flow experiments in a sliced
cylinder geometry on a rotating table b plane, he con-
cludes ‘‘When the source is south and the sink north,
the flow is absolutely stable and intense steady circu-
lation can be induced. On the other hand, the reverse
configuration when the sink is south and the source north
leads to an instability of the flow as soon as U/(bL2) is
order one’’ (see his figure on p. 164). From numerical
experiments in the highly nonlinear Fofonoff regime,
Griffa and Salmon (1989) also found different stability
property of regular and reversed wind-driven gyres, but
in their case it is the regular configuration that is un-
stable.

Such a reversed gyre configuration might be of in-
terest in the Tropics (P. Cessi 2002, personal commu-
nication) but also, as pointed out by an anonymous re-
viewer, more generally through midlatitude western
boundary currents in which circulation opposed to the
interior Sverdrup flow may feed the growth of pertur-
bations near recirculation gyres.

We have also shown that basin subharmonic insta-
bility can occur. For large-scale reduced-gravity modes
(Bu K 1) this leads to the excitation of the low-fre-
quency part of the spectrum that coincides with the
modes with the largest zonal wavelength. We discussed
this potential mechanism for spectral reddening in the
context of the Cessi and Paparella (2001) numerical
experiments.

We also investigated the nonlinear self-saturation of
an isolated mode. Unfortunately, it appears that cubic
nonlinearities cannot close the energy budget, suggest-
ing that higher-order nonlinearities and/or other modes
must come into play to equilibrate the growth of the
unstable modes.

The suitability of a weakly nonlinear expansion hav-
ing been assessed in this simple one-layer model, the
next step is under way to consider basin modes and
mean flow interactions in multilayer models in which
the baroclinic mode structure can be influenced by the
barotropic mean flow advection (Spydell and Cessi
2003) and baroclinic instability can occur.
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