Optimal surface salinity perturbations of the Meridional Overturning Circulation

Florian Sévellec (Yale Univ.), Thierry Huck (CNRS), Jérôme Vialard (IRD) and Alexey Fedorov (Yale Univ.)

Department of Geology and Geophysics, Yale University

EGU April 2009

Climate context (1) : The MOC

- Slow dynamics of the ocean :
- Meridional Overturning Circulation (MOC)
 - Intensity of ${\sim}18~{\rm Sv}$
 - Time scale of ${\sim}500$ ans

・ロン ・回 と ・ ヨン ・ ヨン

Northward transport of heat influencing the European climate ⇒ Variability of the meridional overturning circulation

Climate context (1) : The MOC

- Slow dynamics of the ocean :
- Meridional Overturning Circulation (MOC)
 - $\bullet~$ Intensity of ${\sim}18~\text{Sv}$
 - Time scale of ${\sim}500$ ans

・ロン ・回 と ・ヨン ・ヨン

Northward transport of heat influencing the European climate ⇒ Variability of the meridional overturning circulation

Climate context (1) : The MOC

- Slow dynamics of the ocean :
- Meridional Overturning Circulation (MOC)
 - \bullet Intensity of ${\sim}18~\text{Sv}$
 - Time scale of ${\sim}500$ ans

・ロト ・ 同ト ・ ヨト ・ ヨト

Northward transport of heat influencing the European climate

 \Rightarrow Variability of the meridional overturning circulation

Climate context (2) : North Atl. P-E

- Increase of precipitation in the north Atlantic
 - \rightarrow Josey and Marsh (2005)

(a)

What is the impact of the SSS modification on the meridional overturning circulation?

Climate context (2) : North Atl. P-E

- Increase of precipitation in the north Atlantic
 - \rightarrow NCEP reanalysys

・ロト ・回ト ・ヨト ・ヨト

What is the impact of the SSS modification on the meridional overturning circulation?

Climate context (2) : North Atl. P-E

- Increase of precipitation in the north Atlantic
 - \rightarrow NCEP reanalysys

・ロト ・同ト ・ヨト ・ヨト

What is the impact of the SSS modification on the meridional overturning circulation?

Approach

\Rightarrow Forced variability of the ocean circulation

- Linear approach : weak variations (perturbations) of the ocean circulation
- Generalized stability analysis :
 - Atmosphere ⇒ optimal initial and stochastic perturbation (Farrell and Ioannou, 1996)
 - Ocean ⇒ optimal initial perturbation (Moore and Farrell, 1993)
 - 3 box THC ⇒ optimal initial and stochastic perturbation (Tziperman and Ioannou, 2002)

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Approach

\Rightarrow Forced variability of the ocean circulation

- Linear approach : weak variations (perturbations) of the ocean circulation
- Generalized stability analysis :
 - Atmosphere \Rightarrow optimal initial and stochastic perturbation (Farrell and Ioannou, 1996)
 - Ocean \Rightarrow optimal initial perturbation (Moore and Farrell, 1993)
 - 3 box THC \Rightarrow optimal initial and stochastic perturbation (Tziperman and Ioannou, 2002)

(日) (종) (종) (종) (종)

Maximization method : Oceanic circulation application

Goal :

• Optimal impact of the SSS on the circulation

Lagrange parameters method

- Functions to maximize $\langle F|u(t)\rangle$ (or $\langle F|u(t)\rangle^2$) :
 - Meridional Overturning Circulation (MOC) at the latitude and depth of its steady state maximum (or its variance)
- Constraints
 - 1 Normalisation : $\langle u(0)|\mathbf{S}|u(0)\rangle = 1$
 - 2 Salt conservation : $\langle C|u(0)\rangle = 0$
 - **(3)** Only surface salinity perturbation : $|u(0)
 angle = {\sf P} |u'
 angle$

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Maximization method : Oceanic circulation application

Goal :

• Optimal impact of the SSS on the circulation

Lagrange parameters method

- Functions to maximize $\langle F|u(t)\rangle$ (or $\langle F|u(t)\rangle^2$) :
 - Meridional Overturning Circulation (MOC) at the latitude and depth of its steady state maximum (or its variance)
- Constraints
 - 1 Normalisation : $\langle u(0)|\mathbf{S}|u(0)\rangle = 1$
 - 2 Salt conservation : $\langle C|u(0)\rangle = 0$
 - **(3)** Only surface salinity perturbation : $|u(0)\rangle = \mathbf{P} |u'\rangle$

(日) (종) (종) (종) (종)

Maximization method : Oceanic circulation application

$\mathsf{Goal} \,:\,$

• Optimal impact of the SSS on the circulation

Lagrange parameters method

- Functions to maximize $\langle F|u(t)\rangle$ (or $\langle F|u(t)\rangle^2$) :
 - Meridional Overturning Circulation (MOC) at the latitude and depth of its steady state maximum (or its variance)
- Constraints
 - **1** Normalisation : $\langle u(0)|\mathbf{S}|u(0)\rangle = 1$
 - 2 Salt conservation : $\langle C|u(0)\rangle = 0$
 - 3 Only surface salinity perturbation : $|u(0)\rangle = \mathbf{P} |u'\rangle$

Optimal perturbation experiments

	2D	PG	OPA - ORCA2
Initial perturbation	Х	Х	X
Constant perturbation	Х		
Stochastic perturbation	Х	Х	

Latitude-depth model

 \Rightarrow Methodological study Sévellec et al. (*J. Phys. Oceanogr.*, 2007)

- Planetary geostrophic model :
 ⇒ Influence of the surface boundary condition (flux vs mixed) Sévellec et al. (J. Phys. Oceanogr., in press)
- Ocean General Circulation Model Sévellec et al. (J. Phys. Oceanogr., 2008)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Optimal perturbation experiments

	2D	PG	OPA - ORCA2
Initial perturbation	Х	Х	X
Constant perturbation	Х		
Stochastic perturbation	Х	Х	

• Latitude-depth model

 \Rightarrow Methodological study Sévellec et al. (*J. Phys. Oceanogr.*, 2007)

- Planetary geostrophic model :
 ⇒ Influence of the surface boundary condition (flux vs mixed) Sévellec et al. (J. Phys. Oceanogr., in press)
- Ocean General Circulation Model Sévellec et al. (J. Phys. Oceanogr., 2008)

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Approach Application in an Ocean General Circulation Model

Optimal perturbation experiments

	2D	PG	OPA - ORCA2
Initial perturbation	Х	Х	Х
Constant perturbation	Х		
Stochastic perturbation	Х	Х	

• Latitude-depth model

 \Rightarrow Methodological study Sévellec et al. (*J. Phys. Oceanogr.*, 2007)

• Planetary geostrophic model :

 \Rightarrow Influence of the surface boundary condition (flux vs mixed) Sévellec et al. (*J. Phys. Oceanogr.*, in press)

 Ocean General Circulation Model Sévellec et al. (J. Phys. Oceanogr., 2008)

Optimal perturbation experiments

	2D	PG	OPA - ORCA2
Initial perturbation	Х	Х	Х
Constant perturbation	Х		
Stochastic perturbation	Х	Х	

• Latitude-depth model

 \Rightarrow Methodological study Sévellec et al. (*J. Phys. Oceanogr.*, 2007)

- Planetary geostrophic model :
 ⇒ Influence of the surface boundary condition (flux vs mixed) Sévellec et al. (J. Phys. Oceanogr., in press)
- Ocean General Circulation Model Sévellec et al. (*J. Phys. Oceanogr.*, 2008)

Upper bound in the 2D model

• Initial SSS perturbation :

Great Salinity Anomalies (GSA, Belkin et al., 1998) 0.5 psu on 250 m \Rightarrow 2 Sv

Constant FW perturbation :

hydrological cycle modification in the global warming scenario (Held and Soden, 2006) 4% (3 cm yr⁻¹) \Rightarrow 0.14 Sv

• Stochastic FW perturbation :

Using 2 different reanalysis datasets 5 cm yr^{-1} \Rightarrow 4.6 Sv

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Upper bound in the 2D model

• Initial SSS perturbation :

Great Salinity Anomalies (GSA, Belkin et al., 1998) 0.5 psu on 250 m \Rightarrow 2 Sv

• Constant FW perturbation :

hydrological cycle modification in the global warming scenario (Held and Soden, 2006) 4% (3 cm yr⁻¹) $\Rightarrow 0.14$ Sv

• Stochastic FW perturbation :

Using 2 different reanalysis datasets 5 cm yr^{-1} \Rightarrow 4.6 Sv

(日) (종) (종) (종) (종)

Upper bound in the 2D model

• Initial SSS perturbation :

Great Salinity Anomalies (GSA, Belkin et al., 1998) 0.5 psu on 250 m \Rightarrow 2 Sv

• Constant FW perturbation :

hydrological cycle modification in the global warming scenario (Held and Soden, 2006) 4% (3 cm yr⁻¹) \Rightarrow 0.14 Sv

• Stochastic FW perturbation :

Using 2 different reanalysis datasets 5 cm yr^{-1} \Rightarrow 4.6 Sv

(日) (종) (종) (종) (종)

Approach Application in an Ocean General Circulation Model

Results in the PG model

• Variability :

• Large scale gradient SSS efficiently stimulates a North Atl. multidecadal oscillation.

• Surface boundary condition :

- The sensitivity pattern weakly depends of the surface boundary condition.
- The intensity of the response strongly depends of the boundary condition.

Approach Application in an Ocean General Circulation Model

Results in the PG model

- Variability :
 - Large scale gradient SSS efficiently stimulates a North Atl. multidecadal oscillation.
- Surface boundary condition :
 - The sensitivity pattern weakly depends of the surface boundary condition.
 - The intensity of the response strongly depends of the boundary condition.

Results in the PG model

- Variability :
 - Large scale gradient SSS efficiently stimulates a North Atl. multidecadal oscillation.
- Surface boundary condition :
 - The sensitivity pattern weakly depends of the surface boundary condition.
 - The intensity of the response strongly depends of the boundary condition.

Approach Application in an Ocean General Circulation Model

Application in an Ocean General Circulation Model

Model : OPA 8.2, ORCA2, OPATAM

• MAX(MOC)=7 Sv (48°N)

• MAX(MHT)=0.6 PW (27°N)

Florian Sévellec

Optimal surface salinity perturbations of the MOC

Approach Application in an Ocean General Circulation Model

Optimal initial SSS perturbation for the MOC

Maximum growth after 10.5 yr

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Approach Application in an Ocean General Circulation Model

Conclusions

Florian Sévellec

Optimal surface salinity perturbations of the MOC

Approach Application in an Ocean General Circulation Model

Finite time growth mechanism

 $\alpha \partial_{\phi} \bar{T} \gg \beta \partial_{\phi} \bar{S}$

・ロン ・回 と ・ ヨン ・ ヨン

Э

Florian Sévellec Optimal surface salinity perturbations of the MOC

Approach Application in an Ocean General Circulation Model

Finite time growth mechanism

 $\alpha \partial_{\phi} \bar{T} \gg \beta \partial_{\phi} \bar{S}$

 $\mathrm{SSS}'_{\mathrm{north}} > 0 \Rightarrow \nu'_{\mathrm{surf}} > 0$

Approach Application in an Ocean General Circulation Model

Finite time growth mechanism

 $\alpha \partial_{\phi} \bar{T} \gg \beta \partial_{\phi} \bar{S}$

 $\mathrm{SSS}'_\mathrm{north} > 0 \Rightarrow v'_\mathrm{surf} > 0$

Approach Application in an Ocean General Circulation Model

Finite time growth mechanism

 $\alpha \partial_{\phi} \bar{T} \gg \beta \partial_{\phi} \bar{S}$

 $SSS'_{north} > 0 \Rightarrow v'_{surf} > 0$

Approach Application in an Ocean General Circulation Model

Finite time growth mechanism

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

Approach Application in an Ocean General Circulation Model

Nonlinear - linear comparison

• Relative error : less than 20%

• Max bound : $GSA \Rightarrow 0.75 \text{ Sv}$ $(11\% \text{ of } \overline{\text{MOC}})$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Approach Application in an Ocean General Circulation Model

Nonlinear - linear comparison

• Relative error : less than 20%

• Max bound : $GSA \Rightarrow 0.75 \text{ Sv}$ $(11\% \text{ of } \overline{\text{MOC}})$

() < </p>

臣

Florian Sévellec Optimal surface salinity perturbations of the MOC

- Efficient method to obtain the optimal initial perturbation :
 ⇒ Explicit solution (adj. model)
- Results of the 2D, PG and OGCM models
 Similarity :
 - to 30, the sensitivity is dominated by the Salinity
 - \Rightarrow Difference : Transient growth mechanism
- Optimal SSS perturbation of the MOC in an OGCM
- Upper bound of the impact of SSS on MOC

- Efficient method to obtain the optimal initial perturbation :
 ⇒ Explicit solution (adj. model)
- Results of the 2D, PG and OGCM models \Rightarrow Similarity :
 - Optimal pert. are large scale North-South gradient
 - In 3D, the sensitivity is dominated by the Salinity and the response is dominated by the Temperature
 - \Rightarrow Difference : Transient growth mechanism
- Optimal SSS perturbation of the MOC in an OGCM
- Upper bound of the impact of SSS on MOC

・ロン ・回 と ・ ヨン ・ ヨン

- Efficient method to obtain the optimal initial perturbation :
 ⇒ Explicit solution (adj. model)
- Results of the 2D, PG and OGCM models
 ⇒ Similarity :
 - Optimal pert. are large scale North-South gradient
 - In 3D, the sensitivity is dominated by the Salinity and the response is dominated by the Temperature
 - \Rightarrow Difference : Transient growth mechanism
- Optimal SSS perturbation of the MOC in an OGCM
 Growth mechanism
- Upper bound of the impact of SSS on MOC

・ロン ・回 と ・ ヨン ・ ヨン

- Efficient method to obtain the optimal initial perturbation :
 ⇒ Explicit solution (adj. model)
- Results of the 2D, PG and OGCM models
 ⇒ Similarity :
 - Optimal pert. are large scale North-South gradient
 - In 3D, the sensitivity is dominated by the Salinity and the response is dominated by the Temperature
 - \Rightarrow **Difference** : Transient growth mechanism
- Optimal SSS perturbation of the MOC in an OGCM
 Growth mechanism
- Upper bound of the impact of SSS on MOC

- Efficient method to obtain the optimal initial perturbation :
 ⇒ Explicit solution (adj. model)
- Results of the 2D, PG and OGCM models
 ⇒ Similarity :
 - Optimal pert. are large scale North-South gradient
 - In 3D, the sensitivity is dominated by the Salinity and the response is dominated by the Temperature
 - \Rightarrow Difference : Transient growth mechanism
- Optimal SSS perturbation of the MOC in an OGCM
 ⇒ Growth mechanism
- Upper bound of the impact of SSS on MOC

・ロン ・回 と ・ヨン ・ ヨン

- Efficient method to obtain the optimal initial perturbation :
 ⇒ Explicit solution (adj. model)
- Results of the 2D, PG and OGCM models \Rightarrow Similarity :
 - Optimal pert. are large scale North-South gradient
 - In 3D, the sensitivity is dominated by the Salinity and the response is dominated by the Temperature
 - \Rightarrow Difference : Transient growth mechanism
- Optimal SSS perturbation of the MOC in an OGCM \Rightarrow Growth mechanism
- Upper bound of the impact of SSS on MOC

イロト イポト イヨト イヨト

Future work

• Optimal wind stress perturbation

- Impact of the Southern Ocean
- Mechanism of the finite time growth
- Seasonal cycle (non-autonomous operator)
 Sensitivity to the season

• Tropical study :

 Optimal ocean perturbation and phase locking of ENSO (ENSEMBLES, European project for climate changes prediction)

() < </p>

Future work

- Optimal wind stress perturbation
 - Impact of the Southern Ocean
 - Mechanism of the finite time growth
- Seasonal cycle (non-autonomous operator)
 - Sensitivity to the season

• Tropical study

 Optimal ocean perturbation and phase locking of ENSO (ENSEMBLES, European project for climate changes prediction)

・ロト ・同ト ・ヨト ・ヨト

Future work

- Optimal wind stress perturbation
 - Impact of the Southern Ocean
 - Mechanism of the finite time growth
- Seasonal cycle (non-autonomous operator)
 - Sensitivity to the season

• Tropical study :

• Optimal ocean perturbation and phase locking of ENSO (ENSEMBLES, European project for climate changes prediction)

・ロト ・ 同ト ・ ヨト ・ ヨト

Future work

- Optimal wind stress perturbation
 - Impact of the Southern Ocean
 - Mechanism of the finite time growth
- Seasonal cycle (non-autonomous operator)
 - Sensitivity to the season
- Tropical study :

• Optimal ocean perturbation and phase locking of ENSO (ENSEMBLES, European project for climate changes prediction)

Thank you for your attention

・ロト ・ 同ト ・ ヨト ・ ヨト

Results Future work

▲□> < @> < E> < E> < E

Results Future work

Optimal initial SSS perturbation

Perturbation evolution (autonomous problem) :

 $\partial_t \left| u \right\rangle = \mathbf{A} \left| u \right\rangle,$

$$\Rightarrow |u(\tau)\rangle = \mathsf{M}(\tau) |u(0)\rangle = e^{\mathbf{A}_{\tau}} |u(0)\rangle.$$

Explicit solution (using the adjoint model) of the optimal initial perturbation :

$$\Rightarrow |u(0)\rangle = \mathbf{P} |u'\rangle$$
$$|u'\rangle = (2\gamma_1)^{-1} \left(\mathbf{N}^{-1} \mathbf{P}^{\dagger} \mathbf{M}^{\dagger}(\tau) |F\rangle - \gamma_2 \mathbf{N}^{-1} \mathbf{P}^{\dagger} |C\rangle \right), \text{ with } \mathbf{N} = \mathbf{P}^{\dagger} \mathbf{S} \mathbf{P},$$
$$\gamma_1 = \operatorname{fct} \left(\mathbf{M}^{\dagger}(\tau) |F\rangle, |C\rangle, \mathbf{N}, \mathbf{P}, \gamma_2 \right) \text{ and}$$
$$\gamma_2 = \operatorname{fct} \left(\mathbf{M}^{\dagger}(\tau) |F\rangle, |C\rangle, \mathbf{N}, \mathbf{P} \right).$$

Results Future work

Optimal initial SSS perturbation

Perturbation evolution (autonomous problem) :

 $\partial_t \left| u \right\rangle = \mathbf{A} \left| u \right\rangle,$

$$\Rightarrow |u(\tau)\rangle = \mathbf{M}(\tau) |u(0)\rangle = e^{\mathbf{A}_{\tau}} |u(0)\rangle.$$

Explicit solution (using the adjoint model) of the optimal initial perturbation :

$$\Rightarrow |u(0)\rangle = \mathbf{P} |u'\rangle$$
$$|u'\rangle = (2\gamma_1)^{-1} \left(\mathbf{N}^{-1} \mathbf{P}^{\dagger} \mathbf{M}^{\dagger}(\tau) |F\rangle - \gamma_2 \mathbf{N}^{-1} \mathbf{P}^{\dagger} |C\rangle \right), \text{ with } \mathbf{N} = \mathbf{P}^{\dagger} \mathbf{S} \mathbf{P},$$
$$\gamma_1 = \operatorname{fct} \left(\mathbf{M}^{\dagger}(\tau) |F\rangle, |C\rangle, \mathbf{N}, \mathbf{P}, \gamma_2 \right) \text{ and}$$
$$\gamma_2 = \operatorname{fct} \left(\mathbf{M}^{\dagger}(\tau) |F\rangle, |C\rangle, \mathbf{N}, \mathbf{P} \right).$$

Results Future work

Optimal initial SSS perturbation

Perturbation evolution (autonomous problem) :

 $\partial_t \left| u \right\rangle = \mathbf{A} \left| u \right\rangle,$

$$\Rightarrow |u(\tau)\rangle = \mathbf{M}(\tau) |u(0)\rangle = e^{\mathbf{A}_{\tau}} |u(0)\rangle.$$

Explicit solution (using the adjoint model) of the optimal initial perturbation :

$$\Rightarrow |u(0)\rangle = \mathbf{P} |u'\rangle$$
$$|u'\rangle = (2\gamma_1)^{-1} \left(\mathbf{N}^{-1} \mathbf{P}^{\dagger} \mathbf{M}^{\dagger}(\tau) |F\rangle - \gamma_2 \mathbf{N}^{-1} \mathbf{P}^{\dagger} |C\rangle \right), \text{ with } \mathbf{N} = \mathbf{P}^{\dagger} \mathbf{S} \mathbf{P},$$
$$\gamma_1 = \operatorname{fct} \left(\mathbf{M}^{\dagger}(\tau) |F\rangle, |C\rangle, \mathbf{N}, \mathbf{P}, \gamma_2 \right) \text{ and}$$
$$\gamma_2 = \operatorname{fct} \left(\mathbf{M}^{\dagger}(\tau) |F\rangle, |C\rangle, \mathbf{N}, \mathbf{P} \right).$$

 \Rightarrow Solution depends on the maximization delay τ

Efficient method :

Maximization under constraints : $dG(\gamma, |u_0\rangle) = 0$

• Measure : Linear function

$$G(\gamma, |u_0\rangle) = \langle F|\mathbf{M}(\tau)|u_0
angle - \gamma(\langle u_0|\mathbf{S}|u_0
angle - 1)$$

Explicit soluton :

$$|u_0
angle = \pm rac{\mathbf{S}^{-1}\mathbf{M}^{\dagger}(au)|F
angle}{\sqrt{\langle F|\mathbf{M}(au)\mathbf{S}^{-1}\mathbf{M}^{\dagger}(au)|F
angle}}$$

Measure : quadratic norm

 $G(\gamma, |u_0\rangle) = \langle u_0 | \mathbf{M}^{\dagger}(\tau) | \mathbf{S}_2 | \mathbf{M}(\tau) | u_0 \rangle - \gamma(\langle u_0 | \mathbf{S}_1 | u_0 \rangle - 1)$

Efficient method :

Maximization under constraints : $dG(\gamma, |u_0\rangle) = 0$

• Measure : Linear function

$$G(\gamma, |u_0\rangle) = \langle F|\mathbf{M}(\tau)|u_0
angle - \gamma(\langle u_0|\mathbf{S}|u_0
angle - 1)$$

Explicit soluton :

$$|u_0
angle = \pm rac{\mathbf{S}^{-1}\mathbf{M}^{\dagger}(\tau)|F
angle}{\sqrt{\langle F|\mathbf{M}(\tau)\mathbf{S}^{-1}\mathbf{M}^{\dagger}(\tau)|F
angle}}$$

Measure : quadratic norm

 $G(\gamma, |u_0\rangle) = \langle u_0 | \mathbf{M}^{\dagger}(\tau) | \mathbf{S}_2 | \mathbf{M}(\tau) | u_0 \rangle - \gamma(\langle u_0 | \mathbf{S}_1 | u_0 \rangle - 1)$

 $\langle \gamma \mathbf{S_1} | u_0
angle = \mathbf{M}^{\dagger}(au) \mathbf{S}_2 \mathbf{M}(au) | u_0
angle, \langle u_0 | \mathbf{S}_1 | u_0
angle = 1$

Efficient method :

Maximization under constraints : $dG(\gamma, |u_0\rangle) = 0$

• Measure : Linear function

$$G(\gamma, |u_0\rangle) = \langle F | \mathbf{M}(\tau) | u_0
angle - \gamma(\langle u_0 | \mathbf{S} | u_0
angle - 1)$$

Explicit soluton :

$$|u_0
angle = \pm rac{{f S}^{-1}{f M}^\dagger(au) |F
angle}{\sqrt{\langle F|{f M}(au){f S}^{-1}{f M}^\dagger(au)|F
angle}}$$

• Measure : quadratic norm

$$G(\gamma, |u_0
angle) = \langle u_0 | \mathbf{M}^{\dagger}(au) | \mathbf{S}_2 | \mathbf{M}(au) | u_0
angle - \gamma(\langle u_0 | \mathbf{S}_1 | u_0
angle - 1)$$

Eigenvalue solution :

 $\gamma \mathbf{S_1} \ket{u_0} = \mathbf{M}^{\dagger}(au) \mathbf{S_2} \mathbf{M}(au) \ket{u_0}, \, \langle u_0 | \mathbf{S_1} | u_0
angle = 1$

Efficient method :

Maximization under constraints : $dG(\gamma, |u_0\rangle) = 0$

• Measure : Linear function

$$G(\gamma, |u_0\rangle) = \langle F | \mathbf{M}(\tau) | u_0
angle - \gamma(\langle u_0 | \mathbf{S} | u_0
angle - 1)$$

Explicit soluton :

$$|u_0
angle = \pm rac{{f S}^{-1}{f M}^\dagger(au) |F
angle}{\sqrt{\langle F|{f M}(au){f S}^{-1}{f M}^\dagger(au)|F
angle}}$$

• Measure : quadratic norm

$$G(\gamma, |u_0\rangle) = \langle u_0 | \mathbf{M}^{\dagger}(au) | \mathbf{S}_2 | \mathbf{M}(au) | u_0
angle - \gamma(\langle u_0 | \mathbf{S}_1 | u_0
angle - 1)$$

Eigenvalue solution :

$$\gamma \mathbf{S_1} \ket{u_0} = \mathbf{M}^{\dagger}(au) \mathbf{S_2} \mathbf{M}(au) \ket{u_0}, \, \langle u_0 | \mathbf{S_1} | u_0
angle = 1$$