Dynamics of a dipolar gyre forced by a source/sink In a rotating tank
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Rotating tank experiments Linear versus non-Linear dynamics Mechanism of the instability
The present study seeks for the understanding of a surprising Increasing the forcing rate leads to the instability of the westward jet configuration: many eddies grow inside the zonal The_ _Char_ne_y-Stern criteria for barqtropic iInstability proves to _be
phenomenon observed when using a source and a sink to force central jet, propagate towards the west and then get dissipated as they enter the western boundary currents, causing verified within the westward zonal jet of our unstable circulations:
a dipolar gyre within a rotating homogeneous flow on an inclined exchange of tracer between the two gyres. Uyy-p changes sign.
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Courtesy of A. Colin de “ | 1 > The eigen value spectrum confirms the presence of an unstable
Verdiére. mode above a threshold forcing. As the mode becomes unstable, the
real part of the complex eigen value changes sign. Nevertheless, its

Imaginary part (period of the oscillation) does not vary significantly,
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Numerical simulations (dx=2 mm) are carried out using a eduation A T "~ although western boundary
barotropic shallow-water version of MICOM : H=0.37cm, a=7°, q B j currents played a major role
L_=0.5m, 1 _=8s. Linear friction (r=0.006 s*) and biharmonic 52 5q 5}%” , T E z Inthe exchange of tracer
dissipation (v=10"m’.s") are added to the momentum equation. Lg (atC +u-0z(+v- ayC) A Ygem . e . = £ between the two gyres.
All relevant boundary layers are resolved. R A N i o Y. il ] Having distributed sources
—37m * (9(X — Xsource) — 0(X — Xgink) 3 ; ¢ and sinks would certainly
()2 B 5 2 petter mimic the ocean
Inertial Stommel Munk s = tan(a Origin of the instability < (gt) > 4+ <dW-V)Q@>+<U-V)&H>+ ... F ¢ circulation. Nevertheless, a
. . . N . . 2 g rerequisite to rationalize
5 — @ The spatial origin of the instability may either be in the <(u-V)i&>= < q’D’fT?( > 4+ <¢D.. > + <{F'> {Jhe mquch more complex
western_boundary current, in the region near the _source_a_nd T w . e mow . = eddy wind driven gyres or

sink, or in the westward jet. Counter mean potential vorticity ab - .
! . -~ o | . . yssal circulation is to
gradient eddy fluxes suggest that the instability grows within . According to theory, the amplitude understand the dynamics of

Ttank  the westward jet. I— L S of the oscillations should grow as -
1 05 0 0.5 1 V(F-Fc) around the Hopf bifurcation. such simple systems.

~ 1.24cm




	Slide 1

