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Abstract
The influence of bottom topography on the generic properties of the baroclinic basin modes is investigated through
linear stability analysis of a two-layer shallow water ocean model. Various idealized bottom profiles imitating a
mid-ocean ridge and continental slopes are implemented in an extratropical β-plane closed basin. The damping
rate of the leading baroclinic mode is found to be weakly sensitive to bottom topography while the decadal
period is shortened by bottom elevations. The mechanism of modal decay is rationalized through energy and
vorticity budgets for the barotropic and baroclinic components, to characterize the energy routes and conversions.
For small amplitude topography, the barotropic flow results accurately from the interaction of the flat-bottomed
baroclinic motion with the topographic height: it is found to be three times stronger within closed potential
vorticity contours than with blocked contours. However, the conversion of energy from the baroclinic to the
barotropic mode remains weaker than the frictional processes.

Motivation & Context

The low-frequency ocean circulation is likely a major player, given its large heat capacity and
long adjustment. The latter is achieved through the baroclinic planetary waves that cross the
Atlantic basin in a few decades at mid-latitude. The baroclinic Rossby basin modes have thus
been proposed as a possible explanation for the interdecadal oscillation: they are westward-
propagating Rossby waves reinitiated at the eastern boundary through rapid Kelvin wave
adjustment (LaCasce 2000) or nonresonant inertia-gravity wave response (Primeau 2002), and
owe their existence to mass conservation laws (Cessi and Primeau 2001). However, most
of these studies examined the low-frequency large-scale basin modes from a quasigeostrophic
point of view. Moreover, all of them considered a flat bottom or a reduced gravity configuration
so that the effect of topography could be ignored. It is then natural to wonder what effect the
removal of these simplifications (quasigeostrophy, flat-bottom) might have on the structure of
the baroclinic basin modes, given the well-known tendency of the large-scale topography to
couple the vertical modes. This study is motivated by the desire to pursue these investigations
by considering the influence of different topographic features on the generic property of the
baroclinic basin modes as well as their damping.

Model & Method
1- Governing equations
The two-layer shallow water equations with bottom topography are:

Dtui + f k × ui = −g∇
(
η1 + δi2

ρ2 − ρ1

ρ2
η2

)
+ ν∇2ui, (1a)

∂thi + ∇ · (hiui) = 0. (1b)

hi,ui are the thickness and velocity in each layer i, g =9.81 m s−2 the acceleration due to gravity
and g′ =0.02 m s−2 the reduced gravity, ν = 105 m2 s−1 the lateral eddy viscosity, ηi the free
surface and interface elevations with respect to Hi: H1 =103 m, H2 =3×103 m→ h1 = H1 +η1−η2
and h2 = H2 + η2 − b, b(x, y) the bottom height and f = f0 + βy the Coriolis parameter, f0 =10−4

s−1, β =1.6× 10−11 m−1 s−1. No-slip boundary conditions are imposed on the lateral solid walls
along with mass conservation in each layer.

2- Linear stability analysis
The eigenvalue problem associated with the linearized prognostic equations is:

ωX = JX, (2)
where J is the Jacobian matrix and X = (hi,ui) is the state vector. The time evolution
of the perturbation follows: X(t) = eωrt [Xr cos(ωit) − Xi sin(ωit)] . J is explicitly com-
puted from the finite difference formulation of the equations on an regular Arakawa
C-grid with a 60-point standard resolution in each direction. Its leading eigenval-
ues ω (typically 30) based on the largest real part are computed using Arnoldi’s
method as provided in ARPACK (Lehouck et al. 1998). xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Linear vorticity balance

For each variable, we note X+/hX+ = H1X1 + h2X2 the vertically averaged (barotropic)
component and X− = X1 − X2 its baroclinic counterpart.

* Large-scale SW: ∂tζ
+ = f∂tη1 − βhv+

− f u+
∇b +

H1

h
J(p−, b) + k · ∇ × F

* PG→ k × ∇ψ+ = hu+: J
(
ψ+,

f
h

)
=

H1

h2 J(p−, b)

* ε =
b

H0
� O(1): β∂xψ

+
1 =

H1

H0
J(p−0 , b1)

⇒ The barotropic mode is accurately diagnosed through the interaction of the flat-bottomed
baroclinic mode with the imposed topography elevation.
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(a) ψ from the transport
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(b) ψ from the transport

 H
1
/H

0
 Re(J(p

0

−
,b

1
))

  
L

A
T

IT
U

D
E

 (
°N

)

−40 −20 0

20

40

60

 H
1
/H

0
 Im(J(p

0

−
,b

1
))

−40 −20 0

20

40

60

 Re(ψ
+
 ) ε=0.125

−40 −20 0

20

40

60

 Im(ψ
+
 ) ε=0.125

  LONGITUDE (°E)
−40 −20 0

20

40

60

(c) ψ from the JEBAR in the CR experi-
ment
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(d) ψ from the JEBAR in the MOR experiment

Figure 1: Real (left)
and imaginary
(right) parts of the
barotropic transport
streamfunction: (a)
as obtained from the
vertically integrated
horizontal transport
(upper panel) and
(b) diagnostically
calculated using
the JEBAR term
(bottom panel). A
weak topography
amplitude ε = 0.125
is used.

Mechanims of modal decay

1
2

h∂t|u+
|
2 +

1
2

g∂tη
2
1 = −∇ · (h p+u+) +

h2

h
p−∂tη1+p−u+ H1

h
∇b + LF+, (3a)

1
2

h∗∂t|u−|2 +
1
2

g′∂tη
2
2 = −∇ · (h∗p−u−) −

h2

h
p−∂tη1−p−u+ H1

h
∇b + LF−. (3b)

(a) 1500 m-MOR; Dissipation time-scale τ= 3.83 yr (b) 1500 m-CR; τ=3.93 yr

Figure 2: Perturbation energy box diagram showing the baroclinic total-drag energy route for the least damped
basin mode. Energy budgets are evaluated after taking the volume integral in the global domain.

Sensitivity analysis
1)- to dissipation:
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Figure 3: Sensitivity of the (left)
oscillation period and (right)
decay time (in years) to (top)
horizontal viscosity ν for a fixed
value of diffusivity λ = 2 × 103

m2s−1, (bottom) horizontal dif-
fusivity λ for a fixed viscosity
ν = 104 m2s−1, in the flat bottom
(dash-dot cross line), the 1500
m-MOR (solid plus sign line)
and the 1500 m-CR (solid circle
line).
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Figure 4: Sensitivity diagram in
the ωr − ωi plane for the least
damped oscillation under dif-
ferent prescribed forms and am-
plitudes of topography and dis-
sipation.

2)- to Rd resolution
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Figure 5: Least damped eigen-
mode frequency (solid line) and
decay rate (dashed line) (yr−1)
as function of ν in the flat
bottom experiment. The red
(blue) curve indicates the realis-
tic (unrealistic) stratification ex-
periment. The magenta line cor-
responds to the theoretical fre-
quency 2π/TN of the realistic
stratification experiment.

⇒ The diffusion appears more likely to affect the decay rate while the friction strongly controls
the oscillation period of the variability. The diagram confirms the weak effect of the topography
with respect to frictional and diffusive processes.

Discussion & Conclusion

The large-scale basin modes with decadal periods are promoted through eddy viscosity at
coarse resolution. The period for the gravest basin mode is slightly shortened suggesting
a net acceleration of long Rossby waves by bottom heights as pointed out by Tailleux and
McWilliams (2000). Changes in horizontal diffusion do not have a crucial influence on the
gravest baroclinic mode of ocean variability. However, varying both amplitudes of viscous
momentum dissipation and bottom topography exerted a leading damping role upon the
baroclinic large-scale circulation. We conjecture that large-scale stationary mean flow forcing
(either by winds or heat fluxes) may well act to sustain the decadal mode, thus contributing to
the decadal band of climate variability.
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