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Laboratoire d’Océanographie Dynamique, Univ. Paris VI, France
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ABSTRACT

The linear solution of the barotropic and baroclinic quasi-geostrophic wind
driven circulation are decomposed in a steady forced solution and a time de-
pendent component. The steady wind forced solution consists in a classical
Sverdrup flow dissipated in the western boundary layer where the viscosity is
active while the homogeneous time dependent solution is a sum of oscillatory
modes with arbitrary amplitudes.
The effect of the nonlinear terms is handled through a weakly nonlinear anal-
ysis providing a set of evolution equations for the modes amplitudes. We treat
here the barotropic case. It can be proven that mode stability is related to
the wind stress symmetry. Pure basin modes interactions yields triads with
cycling energy and sub-harmonic instabilities.

1. INTRODUCTION

From numerous time series of climate variability , it is now clear that there
is significant variability on interannual to interdecadal time scales. Several
paradigms apply to this low frequency variability of the climate system, from
external forcing variability (solar cycles, volcanic eruption, atmospheric com-
position), to integration of atmospheric white noise by the ocean into a red
spectrum frankignoul77:-stoch-climat-model, to intrinsic modes of variability
of the atmospheric james94:-wave-zonal-flow-inter-ultra oceanic, or coupled
systems. To the extent that the ocean intrinsic modes play an important role,
identifying their dynamical nature is crucial for climate prediction. As a first
step, we study the time dependent wind driven quasi-geostrophic circulation.

2. ONE LAYER QUASI-GEOSTROPHIC CASE

One layer quasi-geostrophic dynamics

The nondimensionnal one layer quasi-geostrophic evolution equation reads

∂t

(

∇2ψ − Bu−1ψ
)

+ β∂xψ + εJ
(

ψ,∇2ψ
)

= WE + D, (1)

where WE is a function with maximum amplitude of one and D the weak
dissipative processes. Additional nondimensional parameters are the Burger
number and a small parameter ε� 1 controlling the inertial nonlinearities,

Bu =
R2
d

L2
, ε =

τ0(ρβ0)−1

(βL3
x)

,

where Rd =
√

g′H/f0 is the Rossby deformation radius, g′ the reduced grav-
ity and τ0 is a characteristic value of wind stress amplitude. Note that the
nondimensional parameter β = O(1) is kept in (1) to tract the origin of the
term involved in the following sections algebra.
No normal flow at the boundaries and mass conservation constraint are used

∀x ∈ δD, ψ(x) = ψb(t),

∫∫

D
dx dy ψ = 0. (2)

The spatial domain of integration D will be assumed rectangular with an
aspect ratio denoted by r.

Weakly nonlinear expansion: Linear decomposition

We solve by weakly non-linear expansion for ψ and multiple time scale expan-
sion using

ψ = ψ0 + εψ1 + ε2ψ2 + . . . , ∂t = ∂t0 + ε∂t1 + ε2∂t2 + . . . . (3)

The flow therefore is split into two components:

•A stationary wind-forced Sverdrup solution

v̄0 = ∂xψ̄0 = β−1WE − β−1δ(x)

∫ 1

0
dxWE, (4)

where δ is the Dirac distribution and represents the strong localized western
boundary current.

•A discrete spectrum of basin modes solutions of

∂t0

(

∇2ψ̃0 − Bu−1ψ̃0

)

+ β∂xψ̃0 = 0, (5)

with the mass conservation constraint (2).

For the case with no surface deviation , i.e. Bu−1 = 0, we get from
pedlosky87-geoph classical textbook,

ΦΩ = DΩe
iβx
2Ω sinmπx sin

nπy

r
, Ω =

β

2π
√
m2 + n2r−2

, DΩ =
(4Ω)2

β2
,

where DΩ is computed such that the modes provides an orthonormal base
for energy norm. Note that low frequency modes are those with large
wavenumbers.

However, large scale baroclinic modes correspond to small values of Bu.
Solving them numerically shows that the low frequency modes are those
with low wavenumbers, in contrast with the previous case.

Bu 1 10−2 10−4 Bu 1 10−2

1x1 68 1.38 1.04 1x2 155 1.56
2x1 247 1.57 0.53 2x2 1753
3x1 1.73 0.36 3x2 1.96
4x1 2.00 0.28 4x2 2.29

Table: Basin mode period as a function of the mode spatial structure for different

Burger. Wavenumbers are indicated using the scheme (zonal x meridional).

Weakly nonlinear expansion: Amplitude equations

The first order solution is then

ψ0 = ψ̄0 + ψ̃0 = ψ̄0 +
∑

[

A0(Ω, t1, . . .)ΦΩe
iΩt0 + c.c.

]

,

where the slow evolution (over times ti, i ≥ 1) of the amplitudes A0(Ω, t1, . . .)
results from nonlinear dynamics. The amplitude equations are obtained as
solvability conditions of the resonances elimination process. Three type of
“three wave” resonances can occur in this system

• Self interaction of a mode via the Sverdrup flow (Ω0 + 0 = Ω0),

• Triad of distinct modes (Ω1 + Ω2 = Ω0),

• Biharmonic interaction (Ω1 − Ω0 = 2Ω0 − Ω0 = Ω0).

The evolution equation is then

∂t1A0(Ω0) = a1A0(Ω0)
︸ ︷︷ ︸

Sverdrup flow

+ a12
0 A0(Ω1)A0(Ω2)
︸ ︷︷ ︸

Triad

+ a2,−1A0(2Ω0)A∗0(Ω0)
︸ ︷︷ ︸

Subharmonic

,

Since the triadic interaction, the other interactions being absent, will lead to
nonlinear oscillations conserving both enstrophy and energy, we will focus on
the other interactions. To lighten the notation we put Ω = Ω0 in the following.

Sverdrup flow instability The key parameter to compute is

a1 = (2r)−1
∫∫

D
dx dy

[

∇2ψ̄0J
(

Φ∗Ω,ΦΩ
)

+ ψ̄0J
(

∇2ΦΩ,Φ
∗
Ω

)]

.

The imaginary part of the coefficient a1 corresponds to a small correction to
the mode frequency. The real part which is the growth rate of the modes is
computed to be

2<(a1) = a′′1 + c.c. = −i(2rΩ)−1
∫∫

D
dx dy J

(

ψ̄0, βy
)

J
(

ΦΩ,Φ
∗
Ω

)

.

It can be easily proved that mirror-symmetric single gyre are stable. The
instability takes its source in the antisymmetric component of the Sverdrup
flow. Furthermore, it can be proved that for an antisymmetric gyre, only gyre
with an anticyclonic gyre north of a cyclonic gyre are unstable. This latter
case presents a latitudinal gradient of relative potential vorticity opposed to
the planetary gradient.
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Figure 1: Unstable double gyre. The plus and minus signs indicate the vorticity
anomaly due to the Sverdrup gyre.

Period doubling instability Every system of the following form

∂tA = αA∗ + iνA, α ∈ C∗, ν ∈ R

is know to be unstable for sufficiently low ν/|α|. Thus if the coefficient a2,−1
is non zero, every mode with frequency 2Ω will undergo a period doubling
instability by feeding the mode with frequency Ω. This phenomena have
been numerically observed by cessi01:-excit-basin-modes-ocean-atmos-coupl
and provides a nonlinear mechanism for climate spectra reddening. Note that
a complete spectrum can be computed from the amplitude equations once all
the resonances are computed.

3. TWO-LAYER QUASI-GEOSTROPHIC CASE

Two layers quasi-geostrophic dynamics

We decompose the flow in its barotropic and baroclinic components

ψbt = δ1ψ1 + δ2ψ2, ψbc = ψ2 − ψ1.

The nondimensionnal two layers quasi-geostrophic evolution equation reads

∂t∇2ψbt + β∂xψbt + BuJ
(

ψbt,∇2ψbt

)

+ 2Buδ2δ1J
(

ψbc,∇2ψbc

)

−WE −Dbt = 0,

for the barotropic mode while the baroclinic one verifies

∂t

[

Bu∇2ψbc − ψbc
]

+ Buβ∂xψbc + BuJ (ψbc, ψbt)

+ Bu2
(

δ2
1 − δ

2
2

)

J
(

ψbc,∇2ψbc

)

+ Bu2J
(

ψbc,∇2ψbt

)

+ Bu2J
(

ψbt,∇2ψbc

)

+ Bu
[

δ−1
1 WE + Dbc

]

= 0,

where time is rescaled by the characteristic time scale of barotropic Rossby
waves T0 = (β0L)−1; WE is the Ekman pumping, Di’s represent dissipative
processes and

Bu =
R2
d

L2
, Rd =

γ1H1H2

f2
0H

, δi =
Hi
H
, γ1 =

ρ2 − ρ1

ρ0
g.

The boundary conditions are

∀x ∈ δD, i ∈ (bt, bc), ψi(x) = ψb,i(t),

yielding the mass conservation constraint

∫∫

D
dx dy (ψ1 − ψ2) =

∫∫

D
dx dy ψbc = constant.

The barotropic stream function boundary condition is taken to be ψbt = 0 on
the domain frontier δD.

Large scale approximation: Bu = O(ε)� 1

We solve this system by a weakly non-linear expansion for the stream functions
of the form

ψbt = ψbt,0 + εψbt,1 + ε2ψbt,2 + . . . , ψbc = ψbc,0 + εψbc,1 + ε2ψbc,2 + . . . ,

assuming a multiple time scale expansion as in (3).
At first order, we obtain that baroclinic Rossby modes have slower evolution
time scale than barotropic ones which obeys (5).
At next order in Bu = O(ε), we obtain that the barotropic steady flow verifies
the Sverdrup balance (4) since the baroclinic component is ψ̄bc,0 = −δ−1

1 ψ̄bt,0
which corresponds to a resting lower layer (in absence of dissipation).
The baroclinic flow also admits a time varying component on time scale t1,

∂t1

[

Bu∇2ψ̃bc,0 − ψ̃bc,0
]

+ J
(

ψ̃bc,0, ψ̄bt,0 + βy
)

= 0. (7)

Note that we kept the higher order linear dispersive term for regularity pur-
poses. Solutions of (7) are all oscillatory and form an orthogonal base of
the basin. This result is a direct consequence of the inhibition of baroclinic
instability at large scale where potential and kinetic energy are decoupled.
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Figure 2: Stationary modes (upper left), recirculating modes (middle), and basin
modes (lower) in a subtropical gyre (upper right). Real and imaginary parts of

oscillatory modes are displayed.

These baroclinic modes are of three type

•Rossby basin modes deformed by the barotropic Sverdrup flow,

•Recirculating modes, localized in the recirculating gyre, whose frequencies
lies outside the Rossby wave range (lower frequencies),

• Stationary modes, localized in the recirculating gyre, are constant on the
contours of ψ̄bt,0 + βy.
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